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Universitätsplatz 2, D-39106 Magdeburg, Germany

2 European Centre for Soft Computing
Calle Gonzalo Gutiérrez Quirós s/n, E-33600 Mieres (Asturias), Spain

christian.braune@ovgu.de, christian@borgelt.net,
kruse@iws.cs.uni-magdeburg.de

Abstract. Groups of (parallel) point processes may be analyzed with a
variety of different goals. Here we consider the case in which one has a
special interest in finding subgroups of processes showing a behavior that
differs significantly from the other processes. In particular, we are inter-
ested in finding subgroups that exhibit an increased synchrony. Finding
such groups of processes poses a difficult problem as its näıve solution
requires enumerating the power set of all processes involved, which is a
costly procedure. In this paper we propose a method that allows us to
efficiently filter the process set for candidate subgroups. We pay special
attention to the possibilities of temporal imprecision, meaning that the
synchrony is not exact, and selective participation, meaning that only a
subset of the related processes participates in each synchronous event.
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1 Introduction

Point processes occur in many different situations, such as arrivals of customers
or phone calls, accidents on highways or firing of neurons in artificial or natural
neural networks [8]. They generate a series of points in time or space and can be
used to describe different kinds of event sequences. The work we report about in
this paper is motivated by the analysis of (parallel) spike trains in neurobiology
[14]: each train refers to a neuron, the associated point process records the times
at which the neuron emitted an electrical impulse (action potential or spike).

The mechanisms by which a single neuron is activated by the release of neu-
rotransmitters and emits electrical impulses are fairly well understood. However,
how groups of neurons interact with each other and collectively encode and pro-
cess information (like stimuli) is still the subject of ongoing research and intense
debate in the neuroscience community. Several competing theories have been
proposed to describe this processing. In particular, neuron assemblies have been
suggested by Hebb [15] as the key elements of information processing in the cor-
tex. Hebb suggested that such assemblies should reveal themselves by increased
synchronous activity, i.e. they tend to produce (roughly) coincident spikes.
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Fig. 1. Two sets of (artificial) parallel spike trains. Right: independent trains, generated
as Poisson processes; left: coincident spiking events of 20 neurons (randomly selected)
injected into an independent background (see also: [13, 12, 3]).

Since today the recording of several hundred(s) of spike trains in parallel is
possible, there is an increased need for efficiently analyzing the data and to test
the assembly hypothesis accordingly. The objective is to detect those groups of
neurons (or spike trains) that show more synchronous activity than we would
expect to see under the assumption that they are all independent.

The main obstacles we need to deal with in this task are threefold: in the
first place, the possible combinations of neurons that may form an assembly
increases exponentially with the number of neurons recorded. Furthermore we
have to cope with temporal imprecision and selective participation. Temporal
imprecision means that we cannot expect two events that originate from the
same underlying coincident event to actually appear at (exactly) the same point
in time in the spike trains. This may be due to the underlying biological process
that generates the spikes but also due to the measurement procedure in which
one probe records the electrical potential of (possibly) several neurons in parallel
which then have to be separated in a process called spike sorting.

Selective participation means that not each and every neuron that belongs to
an assembly actually takes part in every coincidence; rather some neurons may
miss some of the coincidences. This is quite likely to occur in real neural networks
as neurons need some time (so-called refractory period) after they emitted a
spike to regenerate and be able to emit the next spike. Selective participation
may even lead to situations where we do not even see a single coincidence in
which all neurons forming the assembly took part.

In this paper we analyze the task of distinguishing between groups of spike
trains that contain just random noise (independent spike trains) and groups
that exhibit increased synchronous firing, allowing for temporal imprecision as
well as selective participation, but without actually identifying the assemblies
themselves. Figure 1 shows two samples of parallel spike trains where in the left
case 20 neurons are firing with higher synchrony while the right picture shows
independent trains. This is to emphasize the difficulty of the problem posed.



The remainder of this paper is organized as follows: in Section 2 we briefly
review related work on methods for the analysis of parallel spike trains. In Sec-
tion 3 we describe how our method works and evaluate it on artificially generated
train sets in Section 4. Section 5 concludes the paper with a discussion of the
results and an outlook on future research on this topic.

2 Related Work

The problem of finding cell assemblies in parallel spike train data has been the
subject of research for quite some time. Early algorithmic attempts to detect
assemblies date back at least to [11] where assemblies are detected by performing
several pairwise χ2-tests for independence on the time-discretized spike trains.
The pair of spike trains yielding the lowest p-value is then merged into a single
spike train, containing only the coincidences. The result of this merger is then
added to the pool of spike trains (keeping the originals for further tests) and the
tests are repeated until no further significant pairs can be found.

Generally, attempts to identify assemblies in parallel spike train data can
be (roughly) categorized in three classes: (1) finding out whether there is (at
least) one assembly present in the data (e.g. [18, 21, 22]), (2) answering for each
neuron whether it belongs to such an assembly (e.g. [3]) and (3) actually identi-
fying the assemblies (e.g. [10] or for selective participation [2]). The approach we
present in this paper belongs to the second category, which is particularly useful
for preprocessing, and results from previous work we did on the generation of
prototypes for the analysis of spike trains on a continuous time domain [6].

Methods that test whether a neuron belongs to an assembly or not (like [3])
sometimes rely on the generation of surrogate data. Such surrogates are spike
trains that retain some (desirably: most) of the statistical properties of the orig-
inal spike trains while other properties (for instance, synchronous spiking) are
destroyed on purpose in order to be able to test for this property. Simple exam-
ples are the generation of a spike train that contains the same number of spikes
but at different points in time or a spike train that has the same distribution
of inter-spike intervals. One may then calculate some statistics for each of the
surrogates and if the behavior seen in the original spike train does not occur (or
occurs only very rarely) in the surrogates one can assume that it is not the prod-
uct of a random process. However, though fairly simple and statistically sound,
generating surrogates for a large set of spike trains is a very time-intensive proce-
dure that can quickly become infeasible if a large number of surrogate data sets
need to be generated to meet a chosen significance level. Methods that allow for
faster decision on whether a neuron belongs into an assembly or not are desire-
able and are very useful as a preprocessing step, and then later (computationally
more expensive) analysis can be focused on promising subsets.

In this paper we introduce a method that allows for such quick preprocessing
of a data set of parallel spike trains by analyzing the overall behavior of the
spike trains, especially w.r.t. synchronous events, which groups them by their
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Fig. 2. Spike profile for a set of 100 spike trains with an injected assembly of size 10.

behavior rather than by their actual coincident events. In this sense it may be
seen as a classification algorithm [16].

3 Behavioral Clustering

In this section we describe how to compute a clustering of neurons into potential
assembly neurons and background neurons from parallel spike train data. The
method we propose here circumvents an interpretability problem that occurs
when calculating metric representatives for the spike trains (see [5]) in the sense
that we do not cluster the spike trains directly but rather their behavior: spike
trains that belong to no assembly should behave essentially randomly, while the
other spike trains should show a different, more organized behavior.

A spike train is essentially a point process, that is, a set of events that are
identified by a point in time. We denote such a set by T , every event (or rather
the point in time at which it occurs) by ti ∈ T . Spike trains are often discretized
to form an n-dimensional binary vector, each component of which describes one
time bin and records whether the neuron emitted a spike in the corresponding
time interval or not. As this approach suffers from various problems (especially
the boundary problem, which results from how the bin boundaries fall relative
to possible synchronous events), we choose a dynamic window placement. That
is, by placing windows of a user-specified length 2δt around each event (spike),
we model the events not as single points in time but as intervals during which
they may be considered as coincident with other events. Formally we define:

fT (t) =

{
1 if ∃ti ∈ T : ti − δt ≤ t ≤ ti + δt,
0 otherwise.

Spike trains are thus effectively encoded as interval lists that describe the com-
bined influence of all contained spikes. Note that the above definition merges
overlapping intervals into a single, longer interval and thus the interval list may
contain fewer intervals than the original point process contains points.



A set of parallel recorded spike trains S = {T1, . . . , Tn} can now be repre-
sented by its spike profile which is simply the sum of all individual influence
functions (cf. Figure 2):

fS(t) =
∑
T∈S

fT (t).

To distinguish spike trains that form an assembly from those that do not we need
a representation of the spike trains that allows us to study their behavior. As we
pointed out in the motivation, we are looking for a subgroup of processes that
exhibits higher synchronous activity than we would expect under independence.
Synchronous activity should show itself by several spike trains containing events
that occur (roughly, in the presence of temporal imprecision) at the same time.
As a pairwise comparison of the interval data would be too costly we can use
the profile to identify the behavior of each spike train individually with respect
to the other spike trains.

To extract what may be called a “behavior profile”, we create different in-
terval lists from the spike profile by using a flooding-like approach. That is,
we extract from the spike profile all intervals where fS(t) > 0 holds. This, as
we may say, “prototype” interval list is then compared to each individual spike
train (or rather its representation as an interval list). To this end we calculate the
overlap between the interval lists. Formally, we compute Px = {t | fS(t) ≥ x}
as a “prototype” interval list and then calculate sT (x) = d(T, Px) ∀T ∈ S,
∀x ∈ {0, 1, . . . ,max fS(t)}, where d is the overlap of the two interval lists T
and Px. More technically, we define the cut level function (for level x)

fS,x(t) =

{
1 if fS(t) ≥ x,
0 otherwise

and then sT (x) =

∫
fS,x(t) · fT (t) dt.

That is, the function sT (x) describes the total length of the time intervals in
which both the cut level function (for level x) and the spike train function are 1.
For a sample set of 100 spike trains with an injected assembly of size 10 the
resulting curves can be seen in Figure 3 (left diagram, δ = 3ms).

The profile curves of the assembly can already be distinguished by visual
inspection on this leftmost graph as they descend slightly later. To enhance
the distinction, we exploit the plausible argument that higher levels are more
important to detect synchronous activity. Therefore we weight each point of the
behavior profile with the square of the level, i.e., the number of participating
spike trains. Formally, we have ∀T ∈ S : ∀x ∈ {0, 1, . . . ,max fS(t)} :

s′T (x) = x2 · sT (x).

The resulting curves are shown in the middle diagram of Figure 3.
Finally, in order to make the assembly stand out even more, we normalize the

curves by subtracting for each point the minimum value over the spike trains.
Formally, we have ∀T ∈ S : ∀x ∈ {0, 1, . . . ,max fS(t)} :

s′′T (x) = x2 · sT (x)−mx where mx = min
T∈S

(
x2 · sT (x)

)
.
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Fig. 3. Profile curves for a set of 100 spike trains with an assembly of size 10 injected.
Left: similarity with the prototype/cut level; middle: similarity with the prototype/cut
level, weighted with the square of the number of participating neurons (i.e., the level
height); right: similarity with the prototype/cut level, weighted with the square of the
number of participating neurons (i.e., the level height) and normalized by subtracting
the minimum value over all spike trains.

The resulting curves are shown in Figure 3 on the right. Here the assembly
clearly stands out from the rest of the spike trains so that we may use the
profile curves obtained from the function s′′ to describe the behavior of a spike
train and perform a clustering on this data, using the vector of values s′′T (x) for
x ∈ {0, 1, . . . ,max fS(t)} as points in a metric space.

To automatically separate the two groups we decided to test both a density-
based clustering algorithm (DBSCAN, [9]) and a simple hierarchical clustering
with complete linkage. While the former should be able to detect the number
of assemblies as well, the latter was set to report only two clusters. Directly
reporting the assemblies contained in the set of spike trains would be a nice
feature, as it would lift the method from a pure classification of neurons (into
assembly and non-assembly neurons) to an assembly detection algorithm. But
unfortunately the assembly neurons behave very similar when compared against
the rest of the spike trains as can be seen in Figure 4 where two assemblies are
shown as red and green lines respectively. Only if the two assemblies differed
significantly in size and/or activity the curves would be different enough to
become distinguishable. For the time being we consider them indistinguishable
and leave better approaches for future work. As we want a procedure that decides
without taking too much time if a spike train should be considered noise, we chose
to still evaluate DBSCAN as it showed promising results in separating at least
noise from assembly spike trains.

As input both algorithms received a similarity matrix, computed from the
squared point-wise difference, i.e. the squared Euclidean distance, of the “behav-
ior profiles”. The calculation of this matrix is much faster than the calculation
of a similarity matrix as we employed it in [5].
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Fig. 4. Profile curves for a set of 100 spike trains with two assemblies injected, each of
size 10. Noise is colored in blue, assemblies in red or green. The two disjoint assemblies
are nearly indistinguishable.

Both algorithms may report the clusters found in arbitrary order so that we
still need a criterion to distinguish them. For that we first calculate the mean
profile curve as

mC(x) =
1

‖C‖
∑
T∈C

s′′T (x)

for each cluster C found and then calculate the area under the curve (AUC)
for each mC . The one that yields the smallest AUC has the smallest overlap
with time frames that many spike trains have contributed to. So it is fair to
assume that this is the prototype for the behavior of the noise. The remaining
spike trains will be labeled as potential assembly candidates and can be further
processed with other methods.

As we only need to decide which spike trains should be labeled as noise and
which as assembly candidates, we can also justify the choice of restricting the
hierarchical clustering to report exactly two clusters. One will be the noise while
the other one will contain the assembly spike trains.

4 Evaluation

To evaluate the method we proposed in Section 3 we generated several artificial
sets of spike trains and ran our algorithm to report assembly and non-assembly
spike trains. As this is a kind of classification, we can use classification quality
measures such as the Adjusted Rand Index (ARI, [20]), Adjusted Mutual In-
formation (AMI, e.g. [23]) and others for the evaluation of our method. Both
aforementioned measures calculate the agreement between two different cluster-
ing results based on the predicted cluster labels but independent of the order of
the cluster labels. The first is based on the absolute number of agreements while
the latter is based on the mutual information shared by both clusterings.

To generate an artificial spike train, we sample the inter-spike intervals (time
between two subsequent events) from an exponential distribution until a specified
length of the spike train is reached (i.e., we generate Poisson point processes).
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Fig. 5. Results for 1000 sets of parallel spike trains of 10 seconds length with an
assembly of 20 spike trains injected, analyzed with DBSCAN.

Firing rates were set to 20Hz for the non-assembly spike trains (which is a typ-
ical reference in the field). For the assembly spike trains a mother process was
generated from which the coincident events were copied into the assembly spike
trains with a certain probability (c = 1.0 if full participation was to be present,
c < 1.0 if selective participation was to be modeled). The background firing was
adjusted such that the overall firing rate (background and coincidences) was the
same as for the noise spike trains (20Hz). Thus the spike trains cannot be dis-
tinguished by merely looking at the number of spikes. The temporal imprecision
was modeled by shifting each spike after its generation by a certain, specified
amount (here: ±5ms, i.e. ∀ti : ti := ti + U(−5, 5); or δt = 5ms).

For our experiments we generated 1000 sets of parallel spike trains, consisting
of 100 spike trains each. 20 of the spike trains form a single assembly with
a coincidence rate of 5Hz embedded. The length of the simulated recording
was 10 seconds in the first trials with copy probabilities of 1.0, 0.8 and 0.6.
Each of these sets has been analyzed in the same way with either DBSCAN or
hierarchical clustering grouping the spike trains together. To show the effects of
the assembly size on the detection quality we ran the same number of tests on
sets of parallel spike trains with an assembly size of only 10 and only 6 seconds
length. The results of these tests can be seen in Figures 5 and 6 respectively for
DBSCAN. Please note that the boxplots used seem to disappear in some cases.
This is due to the fact that (almost) all values for the quality measures are
actually 1.0 which means that the algorithm returned a clustering that perfectly
matched the ground truth. Even if we reduce the copy probabilities to 0.6 all
non-perfect results have to be considered outliers (i.e. they lie at least 2.698σ /
outside the 99% interval from the median).

As the result for shorter spike trains with an average participation probability
of 0.8 was significantly worse than we expected, we also used hierarchical cluster-
ing to analyze the last set of spike trains (see Figure 7). For copy probabilities of
c = 0.8 the results are clearly better than when using density-based clustering,
but for smaller copy probabilities the results are still bad albeit better. With
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Fig. 6. Results for 1000 sets of parallel spike trains of 6 seconds length with an assembly
of 10 spike trains injected, analyzed with DBSCAN.
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Fig. 7. Results for 1000 sets of parallel spike trains of 6 seconds length with an assembly
of 10 spike trains injected, analyzed with hierarchical clustering.

only 10 spike trains forming an assembly and only six of them taking part in
a coincidence on average the number of events we can use for the detection of
the assembly neurons is already close to the number of coincidences we would
expect to see in totally independent processes.

5 Conclusion and Future Work

In this paper we presented a method to group sets of point processes by the
similarity of their behavior with respect to the behavior of the other processes
by means of clustering algorithms. Synchronization between processes can be
detected quite well for processes of different length and under additional obsta-
cles such as selective participation and temporal imprecision. We evaluated our
method in several different settings of artificially generated spike trains, i.e. point
processes as they commonly appear in neurobiology. The artificial nature of our
data allows us to control the experiments and perform a much more restrictive
analysis as we can clearly calculate the number of false-positive or false-negative



results. We use different measures for classification evaluation to aggregate these
rates and the results show that our method is capable of recognizing and dis-
tinguishing groups of synchronized processes quite well from those that show
no synchronization. We have to admit, though, that our method is not (yet)
capable of reporting different groups present in the data. However, it is valuable
as a preprocessing method that can focus more expensive methods for actual
assembly detection on a set of promising candidates.
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