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Abstract
Classifying sleep stages is an important basis for neuroscience, health sciences, psy-
chology and many other fields. However, the manual determination of sleep stages 
is tedious and time consuming. Therefore, the development of automatic sleep stage 
classifiers based on data collected with low-cost sensor systems is an important 
research area. This study aims to analyse the generalisability of different machine 
learning approaches for sleep stage classification. We train three different models 
(random forest, CNN-LSTM and seq2seq) for classifying three as well as four sleep 
stages, with the MESA data set. For validation, we use a fivefold cross-validation 
and further validate the models with one new self-recorded test data set to analyse 
the models’ generalisability to a completely new cohort with different characteristics 
with regard to age and health status. Our results show that the two deep learning 
approaches performed better than the random forest. Moreover, all models are gen-
eralisable and therefore suitable for sleep stage classification on a new three-stage 
classification data set. However, generalisability for the four-stage classification task 
shows poorer performance, and therefore requires new approaches such as transfer 
learning or a larger data set to train the models.
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1  Introduction

Sleep plays a crucial role for our organism and is indispensable for our physical 
and emotional well-being. Consequently, nonrestorative sleep has been repeat-
edly linked to significant impairments in social, occupational or other areas of 
functioning causing massive socio-economic burdens. Alarmingly, general sleep 
disturbances are common, affecting about 1/3 of the adult general population 
(Kerkhof 2017; Chattu et al. 2019). In contrast, there is a considerable shortage 
of somnologists and qualified sleep laboratories causing unnecessary diagnosis 
delays. In addition, until today, sleep is measured on the basis of polysomnogra-
phy (PSG) and classified by human experts into five different sleep stages accord-
ing to the suggestion of the American Association for Sleep Medicine (AASM) 
Manual (Iber et al. 2007). PSG and manual sleep scoring is personnel intensive, 
time consuming and expensive. Therefore, new low-cost measurement technol-
ogies and automatised sleep scoring routines that allow sleep measurements in 
extensive field studies are needed to encounter the high prevalence of sleep prob-
lems in modern societies.

Interestingly recent studies (Radha et al. 2019; Sridhar et al. 2020; Sun et al. 
2020) have shown that basic physiological signals, such as heart rate variability 
(HRV) and respiration frequency, substantially change over sleep allowing reli-
ably classifying sleep solely on these signals into three to four sleep stages. So 
far, a wide range of classifiers have been used including deep learning models, 
support vector machines, random forests, bootstrap aggregation with a decision 
tree as the base learner, hidden Markov models or k-means clustering (Faust 
et  al. 2019). For instance, Radha et  al. (2019) applied long short-term memory 
(LSTM) neural networks on 132 HRV features. In addition, Sridhar et al. (2020) 
used a fully convolutional neural network (CNN) for sleep stage classification. In 
Zhai et al. (2020) the Multi-Ethnic Study of Atherosclerosis (MESA) database is 
used to compare random forests with CNN and LSTM models, where neural net-
works achieved higher classification accuracies than traditional machine learning 
models.

In addition to the development of various machine learning algorithms, it is 
of great interest that these models are able to classify completely new data sets 
to provide sleep stage classification without the collection of large amount of 
data and extensive model training. Loh et al. (2020) showed, in their systematic 
review, that in sleep stage classification, the majority of studies used data from 
only one database for model training and testing. Consequently, Loh et al. (2020) 
state that it is important to evaluate models across different databases as this 
could decrease the bias in the methods and identify the best performing approach. 
Sridhar et al. (2020) trained their algorithm with data from the Sleep Heart Health 
Study (SHHS) (Quan et  al. 1997) and MESA and further validated it with the 
Physionet CinC (Ghassemi et  al. 2018) data as an independent data set. Olesen 
et al. (2020) analysed a novel deep neural network with regard to generalisability 
and used five different data sources, containing subjects with diverse disease phe-
notypes. The authors find that automatic sleep stage classification should consider 
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as much data from different sources as possible and recommend for future stud-
ies to test developed models on completely new cohorts. Jiang et al. (2019) used 
multimodal decomposition and hidden Markov model-based refinement based 
on a single-channel electroencephalography (EEG) of the Sleep-EDF (European 
Data Format) and Sleep-EDF expanded data sets. The authors further validated 
the generalisation ability of their model on the Montreal Archive of Sleep Studies 
database. Moreover, Guillot and Thorey (2021) used eight heterogeneous sleep 
staging data sets to train and validate a model based on leave-one-data-set-out. 
The three data sets MESA, MrOS and SHHS showed better generalisation than 
the other four smaller data sets which were used: Dreem Open Dataset - Obstruc-
tive, Dreem Open Dataset - Healthy, MASS, and Sleep-EDF. To address the need 
of low-cost measurements and to provide a low-threshold offer for sleep analysis, 
we have used low-cost measurement technologies to collect sleep data for which 
we aim to identify sleep stages using classification algorithms trained on freely 
available data sets. We compare three different algorithms (one classic machine 
learning approach and two deep learning models) and analyse the generalisability 
of machine learning approaches for sleep stage classification based on interbeat 
intervals (IBIs).

Therefore, we aim to answer the following two research questions: 

1.	 How well does it work to classify sleep stages from self-recorded PSG data when 
using a model trained on a freely available database?

2.	 Which method generalises best to our data for three, as well as four sleep stage 
classification tasks?

To answer these research questions, we analyse whether our sleep stage classifica-
tion models trained with the MESA data can be generalised to a new database with 
different characteristics, such as age distribution. In this context, we use three differ-
ent classification approaches that have all already been used in the recent literature 
to classify sleep stages.1 First, a random forest (Breiman 2001), as a tree-based and 
interpretable machine learning technique that has lower computational cost. Second, 
a CNN-LSTM, as a deep learning approach (Goodfellow et al. 2015; Hochreiter and 
Schmidhuber 1997). Third, as a second deep learning approach, we adopt a seq2seq 
model motivated by the architecture of Sridhar et al. (2020) that receives, in contrast 
to the random forest and the CNN-LSTM that are based on single time windows, 
the whole night for classification. We would like to emphasise that the main objec-
tive of this work is not to maximise the classification performance of the model, 
but to show which model generalises best on a completely new data set that con-
sists of a different sample in terms of age and health status compared to the training 
data. Consequently, the results of this work show whether or which of these three 
approaches generalises better to our data, and hence promises better generalisability. 
We apply the classification task for two different scenarios. In the first, we classify 

1  For random forest and CNN-LSTM see, among others, Zhai et al. (2020) and for sequence to sequence 
(seq2seq) see, among others, Sridhar et al. (2020).



	 Behaviormetrika

1 3

three sleep stages including wake, NREM sleep and REM sleep. In the second, we 
classify four sleep stages by dividing NREM into light and deep sleep and thus clas-
sify wake, light sleep, deep sleep and REM sleep.

2 � Methods

In the following, we review the data used for this study and explain the feature engi-
neering process in detail. We also present the algorithms used and their specifica-
tion, as well as the evaluation method used to answer the two research questions.

2.1 � Data

To classify the sleep stages, we use heart rate data that can be collected with low-cost 
sensor systems and that are based on the IBIs, the distance between two consecutive 
R-peaks of the heart rate. Figure 1 visualises a heart rate with the R-peaks and the 
IBIs.

For the training and validation of the sleep stage classifiers, different data sets 
were used: (i) MESA (Zhang et  al. 2018; Chen et  al. 2015) and (ii) self-recorded 
PSG data (Virtual Sleep Lab (VSL) data).

MESA: MESA is a collaborative longitudinal investigation which has been 
described previously by Bild (2002). 2237 participants of the overall MESA study 
sample were enrolled in a sleep exam that included a sleep questionnaire, a 7-day 
wrist actigraphy measuring activity intensity throughout the day and an in-home 
PSG. To make a final selection of the nights used for the analysis, we defined our 
own quality standard consisting of three sub-metrics. First, we use a combination 
of five quality metrics provided by MESA (wakslepr5, stg1stg2pr5, stg2stg3pr5, 
remnrempr5, arunrel5). Each of these metrics is binary coded {0, 1} and indicates 
whether the scoring of one of the sleep stages or the arousal is unreliable from PSG 
when coded with a value of 1. The first sub-metric, MESA quality index, is the sum 
of these five metrics, and hence ranges from 0 (best) to 5 (worst) points. In addition, 
we use the electrocardiogram (ECG) signal quality (quecg5), which indicates the 

Fig. 1   Heart rate with R-peaks and IBIs
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proportion of sleep time where the quality of the ECG signal was good. This metric 
ranges from 0% (worst) to 100% (best). Finally, a binary coded {0, 1} variable 
(slewake5) indicates whether the quality of the EEG signal only allowed a distinction 
between wake and sleep. For the final selection of test nights, we excluded all nights 
with a MESA quality index above 3, an ECG signal quality below 50% or cases 
where only wake and sleep could be distinguished. Consequently, 1826 nights were 
finally considered for evaluating the models. Due to the nature of the data collection, 
further pre-processing of the data was necessary. The PSG and the wrist worn 
actigraphy were attached to the subjects in a clinic. However, the night of sleep took 
place in the subjects’ private homes. Therefore, we trimmed the data using activity 
counting so that only the data that were actually recorded in the subjects’ beds were 
available. This sample was set up by 53.8% female and 46.2% male participants with 
an age from 54 to 94 years (mean: 69.1, sd: 8.9).

Self-recorded PSG data (VSL data): Apart from the MESA data, PSG data 
recorded at the Laboratory for Sleep and Consciousness Research of the Centre for 
Cognitive Neuroscience (University of Salzburg, Austria) within the VSL project 
were used as an external test data set. The VSL project aims to validate, through 
an integrated proof-of-concept prototype, how in  situ sleep behaviour detection 
can be described, measured and assessed using low-cost sensor technologies and 
methods. All VSL data were recorded with a BrainAmp Standard (Brain Products 
GmbH 2022) at a sampling rate of 1000 Hz. EEG data were acquired using eight 
Ag/AgCl electrodes (F3/4, C3/4, O1/2 as well as A1 and A2 for later rereferencing) 
attached to participants’ scalps according to the 10/20 standard system (Jasper 
1958). In addition, as requested by the AASM sleep scoring manual (Iber et  al. 
2007), two electrooculograms and one (bipolar) submental electromyogram were 
recorded. For heart-rate estimations, a lead II ECG was applied. PSG recordings 
were automatically classified with Somnolyzer 24x7 (Koninklijke Philips 2022) 
according to the sleep scoring guidelines of the AASM (Iber et  al. 2007) with a 
post hoc visual quality control by a human expert scorer.2 R-Peak detection was 
performed using the open-source Matlab (MATLAB 2020) implementation of the 
PhysioNet Cardiovascular Signal Toolbox (Vest et al. 2018; Goldberger et al. 2000). 
Before R-Peak detection, ECG signal was bandpass filtered between 0.1 and 112.5 
Hz and downsampled to 250 Hz. In total, our in-house test data set consisted of 46 
full-night PSG recordings from 27 different subjects. More specifically, the sample 
included 18 ( 66.7% ) women and nine ( 33.3% ) men with an age ranging from 20 

Table 1   Frequency distribution 
of sleep stages for the MESA 
and VSL data set, in %

Wake NREM REM Wake Light Deep REM

MESA 19.2 66.0 14.8 19.2 57.7 8.2 14.8
VSL 11.9 72.3 15.8 11.9 47.4 24.8 15.8

2  It should be noted that these sleep stages are based on EEG data and not IBI intervals like the results in 
this manuscript.
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to 69 years (mean: 30.6, sd: 12). Thus, our sample was younger on average and 
included more women than the MESA data set.

To better interpret the following results, it is necessary to mention that the fre-
quency distribution of sleep stages is different for the MESA and the VSL data set. 
Table 1 shows that MESA has a higher proportion of wake ( 19.2% ) than the VSL 
data set ( 11.9% ). Furthermore, the distribution differs for deep sleep for the four 
sleep stages. Here, we find that deep sleep has a much higher proportion with 24.8% 
in the VSL compared to 8.2% in the MESA data set which was older on average and 
included more men than the VSL data. This can lead to problems when training the 
algorithm with the MESA data set. The uneven distribution of sleep stages may lead 
to that the algorithm trained with the MESA data set tends to classify the waking 
phase of the VLS data set better, but will have problems correctly classifying deep 
sleep in the VSL data set. In addition, the algorithm is trained more based on the 
sleep patterns of older subjects with prior cardiovascular health issues. Since they 
have different sleep patterns compared to the sample of the VSL data set, there may 
be challenges in the classification. Furthermore, the NREM sleep stage is divided 
into light and deep sleep to classify the four sleep stages. Deep sleep is only repre-
sented here with a share of 8.2% , which makes it difficult for the algorithms to learn 
its patterns and leads to poorer performance in the classification task for four com-
pared to three sleep stages.

2.2 � Feature engineering

By aggregating data from rolling, 270 seconds windows for each 30 second epoch 
from the annotated R-Peak and respiratory data of the PSG 46 features were cal-
culated. The HRV features were obtained with the R package RHRV (Rodriguez-
Linares 2020), are either based on time-domain or frequency-domain features and 
measure the variability of the heart rate (Martínez et  al. 2017). All HRV features 
listed in Table 2 and their formulas are described in detail in Martínez et al. (2017). 
In addition, standard statistics, such as mean, standard deviation or percentiles, were 
calculated for each window. The respiratory features were obtained from an airflow 

Table 2   Features included in the 
sleep stage classifier models. All 
abbreviations and the formulas 
of the features are described in 
detail in Martínez et al. (2017)

Type Features

Respiratory Mean, sd
Time Normalised time
Time domain SDNN, pNN50, SDSD, rMSSD, 

IRRR, MADRR, TINN, HRV, 
For IBI and niHR respectively: 
perc05, perc25, perc50, perc75, 
perc95, max, min, range, sd, 
IQR, mad, mean

Frequency domain For spectral density: perc05, 
perc25, perc50, perc75, perc95, 
max, min, range, sd, IQR, mad, 
mean
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thermistor. Furthermore, a time feature represents the normalised time spent by a 
person between going to bed (0) and getting up (1). Therefore, 47 features that are 
used in the random forest model have been calculated in total. All features are listed 
in Table  2. Table  9 in the Appendix displays the descriptive statistics (mean and 
standard deviation) for each feature.

2.3 � Random forests

Random forests (Breiman 2001) are nowadays one of the most popular classification 
and regression methods for practitioners, because they exhibit good performance on 
a wide variety of tasks (Biau and Scornet 2016; Efron and Hastie 2016). They are 
an ensemble method that combines diverse, tree-shaped classifiers to improve over 
their individual performance. Diversity is achieved by injecting randomness into 
the induction process, specifically by bootstrapping the data and sampling from the 
available attributes. The random forest was grown with the ranger package (Wright 
and Ziegler 2017) in the statistical software R (R Core Team 2020). For hyperpa-
rameter tuning, we used the caret (Kuhn 2020) package in R. To find the optimal 
number of trees drawn with standard bootstrapping samples (num.trees), we 
gave three different options: 100, 300 and 500. For the search for the number of vari-
ables to be randomly selected for each split (mtry), we specified a tune length of 10 
and tried the following values for mtry: 2, 7, 12, 17, 22, 27, 32, 37, 42, 47. For both 
classification tasks, the best model parameters found were a mtry of 22. For num.
trees; however, we find no significant changes in performance when using 100, 
300 or 500, as only the third decimal place of the kappa or accuracy value changes 
in each case. However, as a num.trees of 500 gave the best results, we decided to 
use this figure for the evaluation.

2.4 � Deep neural networks

Artificial neural networks became extremely popular (again) after a CNN won the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 (Kriz-
hevsky et al. 2012). This led to what is sometimes called the 3 rd golden age of neu-
ral network research, in which deep multi-layer perceptrons, that is, feed-forward 
neural networks with many hidden layers, are used for complex classification and 
prediction tasks. The advantages of neural networks are that no expert knowledge 
is required, that they can be trained “end-to-end" and that these models can be bet-
ter generalised because they are less susceptible to interference. For time series 
analysis, as we face it here, also LSTM models, as introduced in the seminal paper 
of Hochreiter and Schmidhuber (1997) and later extended from Gers et al. (2000), 
showed superior performance to classical methods. For an extensive overview on 
deep learning approaches, see Goodfellow et al. (2015).

In contrast to the random forest, the engineered features were not used for the 
two neural networks: (1) CNN-LSTM and (2) seq2seq. For these two models, the 
time series of IBIs and respiration rates were resampled to 2 Hz and 0.5 Hz, respec-
tively, and directly included. To extract local features, the input signals were at 
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first fed into convolutional layers in both models. The following part of the models 
involved learning longer range patterns that provided the necessary information for 
the sleep stage classification. This part differed between the two neural networks in 
the amount of information used to classify each epoch and in this way, longer term 
dependencies were learned.

The first model (CNN-LSTM) received single 270 seconds windows as input, for 
which the sleep stage of the central 30 second epoch should be classified, which 
is similar to the random forest model. It consisted of a feature extraction part that 
involved three layers of residual CNN blocks for the IBI time series and two for 
the sequence of respiration rates. A single residual block consisted of two convo-
lutional layers each preceded by a leaky rectified linear unit activation function and 
batch normalisation as well as a residual connection at the end. The kernel sizes of 
the convolutional layers increased with each residual block (5, 10 and 15 for the 
IBI sequence, 5 and 10 for the sequence of respiration rates). This was followed by 
two layers of bidirectional recurrent units, each containing 64 LSTM cells with tanh 
(Goodfellow et al. 2015) activation functions. The results were fed into a dense layer 
with a softmax activation that performed the final classification. To avoid overfit-
ting, a dropout rate of 25% was used in the recurrent units. For optimisation, Adam 
(Kingma and Ba 2014) with a learning rate of 0.0001 was used. The model was 
trained over 50 epochs with a batch size of 64. However, the training process was 
stopped once the loss on the validation data did not decrease for eight consecutive 
epochs.

The second model (seq2seq) was a sequence to sequence model that received 
the entire IBI and respiration rate time series of each individual night and outputs a 
sequence of sleep stage predictions, one for each 30 second epoch. It is essentially 
the model proposed by Sridhar et al. (2020) with a few adjustments: First, the signal 
of the respiration rate was included in the model. The local features of this signal 
were extracted similarly to the local IBI features and the results were concatenated 
before the dilated convolutional blocks. “Local" in this context refers to a 128 s seg-
ment of the respective signal as both signals were represented by a sequence of 1200 
overlapping batches, each covering 128 seconds and centered around the 30 second 
epoch for which the sleep stage should be predicted. Second, L1 regularisation of 
the weights was omitted, resulting in an increase in the model’s performance when 
training with the MESA data set. Finally, similar to the first network, this model was 
also subject to early stopping.

Categorical cross-entropy was used as loss function in both of the above 
described models. To consider the imbalanced distribution of classes in the data set, 
we followed Sun et al. (2020) and implemented a weighted loss calculation, where 
the weights corresponded to the inverse class frequency in the training data.

2.5 � Evaluation

To answer the first research question and evaluate the generalisation performance of 
random forests and neural networks, two steps were performed. In the first step, we 
applied a fivefold cross-validation to the MESA data set, which gives us an overview 
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of the general model performance of the respective model. In a second step, we used 
the trained algorithm of the respective model from the first step and applied it to the 
self-recorded VSL data.

Thus, we can interpret the generalisation performance of our models when we 
compare the results between the first and the second step, the two classification tasks 
and across the different models. The first research question is, thus, answered by 
comparing the classification performance between the results with the MESA test 
data and the VSL data for each method separately. To answer the second research 
question, the classification results of the three methods are compared when applied 
to the VSL data.

For the validation of all classification approaches, accuracy, Cohen’s Kappa, 
weighted F1-scores and confusion matrices will be provided. Cohen’s Kappa 
(Cohen 1960) provides a measure of accuracy that excludes random accuracy. Its 
value ranges from −1 (worst possible classification) to +1 (perfect classification). A 
Cohen’s Kappa of 0 would mean that the results correspond to a random classifica-
tion. The F1-score is a metric that calculates the harmonic mean between recall and 
precision, where recall measures the true positive predicted classes in relation to all 
positive cases and the precision measures the true positive predicted classes in rela-
tion to all positive predictions (Powers 2011). For the model evaluation, we applied 
a fivefold cross-validation and calculated the average of the corresponding perfor-
mance metric across all five splits for each of the three machine learning approaches 
and reported the average and the standard deviation.

To show whether the classification results of the respective methods are simi-
lar or not, and to facilitate the comparison of the classification results, we use the 
Adjusted Rand Index (ARI) (Rand 1971; Hubert and Arabie 1985) as a summary 
measure. With the ARI, we compare the predicted sleep stages between each of the 
three applied models, respectively. The ARI ranges between zero (completely dis-
tinct results) and one (completely similar results).

3 � Results

Table 3 shows the accuracies, Cohen’s Kappa and weighted F1-score for all three 
classification approaches and both classification tasks (three sleep stages, as well 
as four sleep stages). For three classes, the accuracies ranged from 68.3% for the 
random forest to 82.1% for the seq2seq model when using the MESA data for 
validation. Furthermore, for four classes, the results ranged from 59.9% for the 
random forest to 74.2% for the seq2seq model for the MESA data. For the VSL data, 
the random forest showed classification accuracies of 73.3% for three and 49.4% 
for four classes. The seq2seq model achieved classification accuracies of 81.2% 
for three and 64.4% for four classes for the VSL data. Table 3 shows that all three 
classification methods are generalisable for three sleep stages from the MESA to 
the VSL data, as the accuracy and Cohen’s Kappa values were quite similar for 
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Table 3   Mean values of fivefold cross-validation for classification accuracy, Cohen’s kappa and F1 
scores of sleep stage classifiers

Standard deviation in parentheses

MESA data VSL data

Accuracy 
in %

Cohen’s 
Kappa

Weighted 
F1-score 
in %

Accuracy 
in %

Cohen’s 
Kappa

Weighted 
F1-score 
in %

3 classes RF 68.3 (0.6) 0.237 
(0.009)

63.5 (0.6) 73.3 (0.1) 0.189 
(0.004)

63.6 (0.3)

CNN-
LSTM

79.5 (0.4) 0.537 
(0.014)

77.7 (0.5) 81.0 (0.4) 0.506 
(0.022)

79.4 (0.6)

seq2seq 82.1 (0.9) 0.641 
(0.012)

81.7 (0.5) 81.2 (0.5) 0.571 
(0.02)

81.2 (0.6)

4 classes RF 59.9 (1.07) 0.194 
(0.01)

53.8 (1.2) 49.4 (0.2) 0.096 
(0.004)

45.8 (0.8)

CNN-
LSTM

71.6 (0.5) 0.45 
(0.014)

67.1 (1.2) 56.4 (0.5) 0.267 
(0.025)

47.3 (0.8)

seq2seq 74.2 (0.8) 0.553 
(0.014)

73.0 (0.9) 64.4 (0.6) 0.444 
(0.023)

61.9 (0.7)

Table 4   Confusion matrices of sleep stage classifiers based on MESA test data, three sleep stages

Mean values of fivefold cross-validation for classification (RF: random forest, NN: CNN-LSTM, s2s.: 
seq2seq model)

RF predicted NN predicted s2s predicted

Wake NREM REM Wake NREM REM Wake NREM REM

actual Wake 23.1 68.5 8.4 43.9 52.2 3.9 62.6 31.9 5.5
NREM 4.5 92.4 3.1 2.5 95.5 2.0 5.5 90.7 3.8
REM 10.9 69.6 19.5 4.1 41.2 54.6 6.7 22.1 71.2

Table 5   Confusion matrices of the sleep stage classifiers based on the MESA test data set, four sleep 
stages

Mean values of fivefold cross-validation for classification (RF: random forest, NN: CNN-LSTM, s2s: 
seq2seq model)

RF predicted NN predicted s2s predicted

Wake Light Deep REM Wake Light Deep REM Wake Light Deep REM

actual Wake 24.6 66.3 0.2 8.9 47.8 47.9 0.0 4.3 62.4 31.2 0.3 6.1
Light 5.5 89.6 1.1 3.7 3.5 94.2 0.1 2.3 6.2 86.0 3.3 4.5
Deep 2.8 90.0 6.3 0.9 1.5 97.7 0.4 0.7 1.8 69.3 27.3 1.6
REM 11.6 67.9 0.1 20.4 5.0 39.4 0.0 55.6 6.1 21.0 0.2 72.6
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both data sets. However, when classifying four sleep stages, all three classification 
approaches perform worse for VSL data compared to the MESA test data set.

Tables 4 and 5 show the confusion matrices when using the MESA data set for 
validation. We found that the random forest showed the best results for NREM sleep 
with a percentage of 92.4% of correctly classified epochs. For NREM sleep the 
CNN-LSTM showed classification accuracies of 95.5% and the seq2seq model of 
90.7% . For four sleep stages the random forest performed best for light sleep, with 
a proportion of 89.6% correctly classified epochs. For four sleep stages the CNN-
LSTM and the seq2seq model showed the best classification performance for light 
sleep (CNN-LSTM: 94.2% ; seq2seq model: 86.0%).

Tables 6 and 7 show the results using the VSL data for validation. For three sleep 
stages, NREM sleep ( 95.8% ) and wake ( 20.4% ) showed similar results compared to 
Table 4, when the MESA data were used for validation for the random forest. For 
four sleep stages, the classification performance for REM sleep dropped to 10.4% 

Table 6   Confusion matrices of sleep stage classifiers based on the VSL test data, three sleep stages

Mean values of fivefold cross-validation for classification (RF: random forest, NN: CNN-LSTM, s2s: 
seq2seq model)

RF predicted NN predicted s2s predicted

Wake NREM REM Wake NREM REM Wake NREM REM

actual Wake 20.4 76.3 3.3 53.6 42.9 3.6 53.7 38.8 7.5
NREM 3.0 95.8 1.2 3.5 94.6 1.9 5.4 88.7 5.8
REM 9.2 80.8 9.9 5.2 54.6 40.2 8.0 24.1 67.9

Table 7   Confusion matrices of sleep stage classifiers based on the VSL test data, four sleep stages. Mean 
values of fivefold cross-validation for classification (RF: random forest, NN: CNN-LSTM, s2s: seq2seq 
model)

RF predicted NN predicted s2s predicted

Wake Light Deep REM Wake Light Deep REM Wake Light Deep REM

actual Wake 22.4 73.9 0.0 3.7 61.3 35.0 0.0 3.7 49.2 40.7 0.5 9.6
Light 4.2 93.9 0.3 1.7 6.7 90.7 0.0 2.7 5.8 83.4 1.2 9.6
Deep 1.7 95.6 2.2 0.5 2.6 96.8 0.0 0.6 1.6 68.5 28.4 1.5
REM 9.5 80.0 0.0 10.4 8.0 53.4 0.0 38.2 3.8 20.8 0.0 75.4

Table 8   Adjusted Rand Index 
based on predicted values of 
VSL or MESA test data and 
three or four sleep stages (RF: 
random forest, NN: CNN-
LSTM, s2s: seq2seq model)

Test data set Sleep stages RF vs. NN RF vs. s2s NN vs. s2s

MESA Three 0.71 0.68 0.77
MESA Four 0.69 0.58 0.68
VSL Three 0.74 0.61 0.69
VSL Four 0.75 0.43 0.53
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and for deep sleep to 2.2% , whereas the other two sleep stages showed similar or 
even better results regardless of whether the MESA or VSL test data were used to 
validate the random forest. Also for the CNN-LSTM and the seq2seq model, NREM 
was best classified in the three stage classification task ( 94.6% and 88.7% , respec-
tively), while light sleep was best classified in the four stage classification task with 
90.7% (CNN-LSTM) and 83.4% (seq2seq).

Table 8 shows the ARI that ranged between a value of 0.43 (random forest vs. 
seq2seq) for the VSL test data set and the four-level classification task and 0.77 
(CNN-LSTM vs. seq2seq) for the MESA test data set and the three-level classifica-
tion task. In general, we find that in most model comparisons, the ARI is higher in 
the three-stage classification task compared to the four-stage classification task espe-
cially when comparing the other models to the seq2seq. This is likely due to the fact 
that the other two models label almost no epochs as deep sleep whereas the seq2seq 
model has at least a decent ability to detect deep sleep.

4 � Discussion

When analysing the classification performance of single classes, in the three-stage 
classification task, NREM was classified best, while wake was classified worst. Fur-
thermore, in the four-stage classification task, light sleep was classified best, while 
deep sleep was classified worst. These findings applied to all three classification 
approaches.

As of today, human experts represent the gold standard in the classification of 
sleep. However, it is well known that the inter-rater agreement between human 
experts is far from perfect. More specifically, human experts agree for five classes in 
only 82.6% (Danker-Hopfe et al. 2004) or for four classes in 88% (Sridhar et al. 2020; 
Rosenberg and Van Hout 2013) when staging sleep based on PSG data. Hence, the 
interpretation of the performance of automatic sleep classification procedures as 
described in this paper should be based on these imperfect human expert bench-
marks. With regard to the first research question, we found that each of the three 
models showed similar classification performance for three sleep stages when either 
MESA or self-recorded VSL data were used for validation. While in the three stage 
classification task, the weighted F1-score equals 63.5% and 63.6% for the MESA 
as well as VSL data set, it drops from 53.8% (MESA) to 45.8% (VSL) for the four 
class classification task for the random forest model. Also for the CNN-LSTM and 
seq2seq model, the weighted F1-score is similar for the MESA and VSL validation 
data for three classes, while it drops for four classes. However, when reducing the 
granularity by dividing the NREM stage into light and deep sleep, the classifica-
tion performance was slightly worse when VSL data were used for validation. This 
allows us to support the first research question for the three-stage classification task 
and establish that all three models are generalisable to our self-recorded VSL data. 
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On the other hand, the research question for four classes can only be supported con-
ditionally, as the results for the VSL test data were slightly worse and did not cor-
respond to the results when using the MESA data for validation. In particular, the 
deep sleep stage class was predicted worse with the VSL test data. This sleep stage 
was relatively less frequent in the MESA data than in the VSL test data and was 
predicted worse with all three classification models in the VSL test data set. Regard-
ing the second research question, we found that the three models differed in their 
classification performance. We found that the seq2seq model showed the best per-
formance, followed by the CNN-LSTM model and the random forest, which showed 
the poorest performance. Thus, we can state that the seq2seq model generalises best 
to our data and has the best classification performance, when using self-recorded 
VSL data. The results also indicate that information about the broader temporal con-
text of the respective sleep epoch is beneficial for the overall classification perfor-
mance, especially as far as the classification of deep sleep phases is concerned. This 
becomes obvious when comparing the classification performance of the seq2seq 
model with the other two for the four-stage classification task. While the seq2seq 
model receives the IBI time series of the entire night as input and can, therefore, 
base its predictions for every single epoch on a very broad temporal context, the 
other two models feature a scope limited to 270 s. Also, the seq2seq model appears 
to be the only one showing at least a decent performance when classifying deep 
sleep, while the other two models seem to be almost unable to detect deep sleep 
epochs.

In addition, the ARI shows us the degree of agreement between the models and 
how their classification results differ between them. Comparing the models with the 
same test data set and classification level, we find the lowest ARIs between the ran-
dom forest and seq2seq models, while there is no clear picture for the highest values. 
For the VSL data, we found the highest agreement of the models’ result between the 
random forest and the CNN-LSTM for the three, as well the four classification task. 
While for the MESA data, the highest agreement for the three classification task can 
be seen between CNN-LSTM and seq2seq model, the agreement between the ran-
dom forest and CNN-LSTM and between CNN-LSTM and seq2seq is very similar 
for the four sleep stage classification results.

Nevertheless, even the performance of the seq2seq model is rather low in com-
parison to other deep learning approaches that were using IBI data and deep learn-
ing models such as the one developed in the work of Sridhar et  al. Sridhar et  al. 
(2020), even though the architecture of the seq2seq model is heavily based on this 
work. The reason for this is twofold. First, the MESA data set used for training is 
comparatively small to data sets used in other works especially considering the rela-
tively high number of parameters of the seq2seq model (e.g. Sridhar et al. (2020) 
used a combined set of the MESA and SHHS data set resulting in a total of 10, 332 
nights). Second, the main aim of this work is not to maximise the models’ perfor-
mance on a specific data set but to develop a model that generalises well to a data set 
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that differs from the training set in several aspects. Since the test data set comprised 
participants of a much younger age (the average age is 69.6 for the MESA data set 
and 32.7 for the VSL data set) with no prior cardiovascular condition as is the case 
for the MESA data set, this indeed presents a challenge to the generalisability of the 
model. Future work within the VSL project will concentrate on the four sleep stage 
classification task and further classification models, e.g. transfer learning (Radha 
et  al. 2021)-based approaches and models containing additional data sets will be 
developed to improve the four stage classification models.

For the robustness of the models, we applied a fivefold cross-validation. Future 
work could further test the robustness of the developed models using differ-
ent cohorts of subjects (e.g. subjects with different disease patterns) to investigate 
whether the models are still generalisable to these different subjects’ characteristics.

5 � Conclusion

This work demonstrated the generalisability of sleep stage classification and its chal-
lenges from three machine learning approaches using a new self-recorded data set. 
The results showed that the seq2seq model is best generalisable to the self-recorded 
sleep data set. In addition, we find that for the three-stage classification task—
wake, NREM sleep, REM sleep—all three machine learning approaches are suit-
able to classify sleep stages of a new data set. However, classifying the four sleep 
stages—wake, light sleep, deep sleep, REM sleep—showed that the model trained 
with the MESA data set is not well generalisable to the VSL data, as especially deep 
sleep was predicted worse with the VSL data compared to the MESA data set. This 
implies that more data sets or other classification approaches, e.g. transfer-learning 
approaches, are needed to train models which are also generalisable for four sleep 
stages.

Appendix

Table 9 displays the descriptive statistics of all 47 features used in the random forest 
model. All abbreviations and the formulas of the features are described in detail in 
Martínez et al. (2017).
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Table 9   Descriptive statistics of 
all 47 features

Variable name Mean sd

Respiratory
 Resp_mean 15.65 1.77
 Resp_sd 0.85 0.45

Time
 Epoch_norm 100 14.99

Time domain
 SDNN 57.02 73.71
 pNN50 13.25 18.45
 SDSD 44.85 78.13
 rMSSD 44.77 78.08
 IRRR​ 64.32 54.61
 MADRR 21.94 28.55
 TINN 156.85 72.00
 HRVi 10.04 4.61
 RR_perc_05 864.54 141.67
 RR_perc_25 923.31 144.87
 RR_perc_75 987.63 156.65
 RR_perc_95 1032.80 170.17
 RR_max 1141.16 747.44
 RR_min 778.11 598.20
 RR_range 363.05 953.25
 RR_sd 57.02 73.71
 RR_med 956.72 149.83
 RR_IQR 64.32 54.61
 RR_mad 45.10 34.94
 RR_mean 954.24 147.09
 niHR_perc_05 59.65 9.75
 niHR_perc_25 62.28 9.95
 niHR_perc_75 66.62 10.77
 niHR_perc_95 71.32 12.19
 niHR_max 77.79 16.33
 niHR_min 55.39 11.46
 niHR_range 22.40 17.07
 niHR_sd 3.79 2.83
 niHR_med 64.27 10.25
 niHR_IQR 4.33 3.95
 niHR_mad 3.01 2.52
 niHR_mean 3.01 2.52

Frequency domain
 spec_max 120599.36 339935.22
 spec_min 3056.18 91439.46
 spec_sd 13744.89 36299.43
 spec_mean 8989.44 139988.68
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