Induction of Association Rules:
Apriori Implementation

Christian Borgelt and Rudolf Kruse

Department of Knowledge Processing and Language Engineering
School of Computer Science

Otto-von-Guericke-University of Magdeburg

Universitatsplatz 2, D-39106 Magdeburg, Germany

Abstract. We describe an implementation of the well-known apriori algo-
rithm for the induction of association rules [Agrawal et al. (1993), Agrawal et
al. (1996)] that is based on the concept of a prefiz tree. While the idea to use
this type of data structure is not new, there are several ways to organize the
nodes of such a tree, to encode the items, and to organize the transactions,
which may be used in order to minimize the time needed to find the frequent
itemsets as well as to reduce the amount of memory needed to store the coun-
ters. Consequently, our emphasis is less on concepts, but on implementation
issues, which, however, can make a considerable difference in applications.

Keywords. association rule, apriori algorithm, prefix tree, item coding

1 Introduction

Association rule induction is a powerful method for so-called market basket
analysis, which aims at finding regularities in the shopping behaviour of cus-
tomers of supermarkets, mail-order companies, on-line shops and the like.
With the induction of association rules one tries to find sets of products that
are frequently bought together, so that from the presence of certain products
in a shopping cart one can infer (with a high probability) that certain other
products are present. Such information, expressed in the form of association
rules, can often be used to increase the number of items sold, for instance, by
appropriately arranging the products in the shelves of a supermarket (they
may, for example, be placed adjacent to each other in order to invite even
more customers to buy them together).

The main problem of association rule induction is that there are so many
possible rules. For the product range of a supermarket, for example, which
may consist of several thousand different products, there are billions or even
trillions of possible association rules. It is obvious that such a vast number of
rules cannot be processed by inspecting each one in turn. Efficient algorithms
are needed that restrict the search space and check only a subset of all rules,
but, if possible, without missing important rules.

The importance of a rule is usually measured by two numbers: Its support,
which is the percentage of transactions that the rule can be applied to (or,
alternatively, the percentage of transactions, in which it is correct), and its
confidence, which is the number of cases in which the rule is correct relative
to the number of cases in which it is applicable (and thus is equivalent to
an estimate of the conditional probability of the consequent of the rule given
its antecedent). To select interesting rules from the set of all possible rule, a
minimum support and a minimum confidence are fixed.

[P [7 [e [na] e]

a b C d
[Rab | Nac [Nad [Nae | [1e [Ned [e | [1ca [Mce | [Mde |
b ¢\ d c d d|

[Nabe [Tabd [Tabe | [Tacd[Tace | [Tade]| [Mbed [Nbce |[Rode| [Tcae]

c d d d
[Mabed [Nabee |[Nabde | [Nacde |

d

Fig.1. A (full) itemset tree for the five items a, b, c, d, and e.

Among the best known algorithms for association rule induction is the apri-
ori algorithm [Agrawal et al. (1993), Agrawal et al. (1996)]. This algorithm
works in two steps: In a first step the frequent itemsets (often misleadingly
called large itemsets) are determined. These are sets of items that have at
least the given minimum support (i.e., occur at least in a given percentage of
all transactions). In the second step association rules are generated from the
frequent itemsets found in the first step. Usually the first step is the more
important, because it accounts for the greater part of the processing time.
In order to make it efficient, the apriori algorithm exploits the simple obser-
vation that no superset of an infrequent itemset (i.e., an itemset not having
minimum support) can be frequent (can have enough support).

In this paper we describe an implementation of the apriori algorithm that
has gained some popularity in the research community. This program was
written by the first author of this paper and can be retrieved free of charge
at http://fuzzy.cs.uni-magdeburg.de/ borgelt/software.html.

2 Itemset Trees

In order to find the frequent itemsets, we have to count the transactions
they are contained in. Our implementation is based on the idea to organize
the counters for the itemsets in a special kind of prefiz tree, which not only
allows us to store them efficiently (using little memory), but also supports
processing the transactions as well as generating the rules. The structure
of a (full) itemset tree as our implementation uses it is shown in Figure 1.
Each ng denotes a counter for an itemset S. The edge labels on a path from
the root to some node specify the common part of the itemsets for which
there are counters in that node. Since the common part would be a prefix
if we were dealing with sequences instead of sets, such a data structure is
commonly called a prefiz tree. That we are dealing with sets, not sequences,
is the reason, why this tree structure is unbalanced: n,y., for instance, is the
same as My, and therefore only one of these counters is needed.

During the first step of the apriori algorithm this tree is created level by
level. That is, in a first traversal of the transactions the frequencies of the one
element sets are determined (the root node is created), in a second traversal
the two element sets are checked (the second tree level is created—the children
of the root) and so on. Of course, in doing so, some branches of the tree can
be pruned, because by exploiting the simple observation mentioned above we
can find out whether a branch can contain frequent itemsets or not.

3 Node Organization

There are different data structures that may be used for the nodes of this tree.
In the first place, we may use simple vectors of integer numbers to represent
the counters. The items (note that we only need one item to distinguish
between the counters of a node, see above) are not explicitly stored in this
case, but are implicit in the vector index. Alternatively, we may use vectors,
each element of which consists of an item identifier (an integer number) and
a counter, with the vector elements sorted by the item identifier.

The first structure has the advantage that we do not need any memory
to store the item identifiers and that we can very quickly find the counter
corresponding to a given item (we simply use the item identifier as an index),
but it has the disadvantage that we may have to add “unneccessary” counters
(i.e., counters for itemsets, of which we know from the information gathered
in previous steps that they must be infrequent), because the vector may not
have “gaps”. This problem can only partially be mitigated by enhancing the
vector with an offset for the first element and a size, so that unneccessary
counters at the margins of the vector can be discarded. The second structure
has the advantage that we only represent the counters we actually need, but it
has the disadvantage that we need extra memory to store the item identifiers
and that we have to carry out a binary search in order to find the counter
corresponding to a given item.

A third alternative would be to use a hash table per node. However, al-
though this reduces the access time, it increases the amount of memory
needed, because for optimal performance a hash table must not be too full.
In addition, it does not allow us to exploit easily the order of the items (see
below). Therefore we do not consider this alternative here.

Obviously, if we want to optimize speed, we should choose simple counter
vectors, despite the gap problem. If we want to optimize memory usage, we
can decide dynamically, which data structure is more efficient in terms of
memory, accepting the costs for the binary search if necessary.

It should also be noted that we need a set of child pointers per node, at
least for all levels above the currently added one (in order to save memory, we
should not create child pointers before we are sure that we need them). For
organizing these pointers we have basically the same options as for organizing
the counters. However, if the counters have item identifiers attached, we have
an additional possibility. We may draw on the organization of the counters,
using the same order of the items and leaving child pointers nil if we do not
need them. This can save memory, even though we may have unneccessary
nil pointers, because we need not store item identifiers a second time.

4 Item Coding

It is clear that the way in which the items are coded (i.e., are assigned integer
numbers as identifiers) can have a significant influence on the gap problem for
counter vectors mentioned above. Depending on the coding we may need large
vectors with a lot of gaps or we may need only short vectors with few gaps.
A good heuristic approach to minimize the number and size of gaps seems
to be the following: It is clear that frequent itemsets contain items that are
frequent individually. Therefore it is plausible that we have only few gaps
if we sort the items w.r.t. their frequency, so that the individually frequent
items receive similar identifiers (and, of course, infrequent items are discarded
entirely). In this case it can be hoped that the offset/size representation of

a vector can discard the greater part of the uneccessary counters, because
these can be expected to cluster at the vector margins.

Extending this scheme, we may also consider to code the items w.r.t. the
number of frequent pairs (or even triples etc.) they are part of, thus using
additional information from the second (or third etc.) level to improve the
coding. This extension, however, is not yet incorporated in the publicly avail-
able version of our program (version 4.0 at the time of this writing).

5 Recursive Counting

The itemset tree is not only an efficient way to store the counters, it also
makes processing the transactions very simple, especially if we sort the items
in a transaction ascendingly w.r.t. their identifiers. Then processing a trans-
action is a simple doubly recursive procedure: To process a transaction for
a node of the tree, (1) go to the child corresponding to the first item in
the transaction and process the remainder of the transaction recursively for
that child and (2) discard the first item of the transaction and process it
recursively for the node itself (of course, the second recursion is more easily
implemented as a simple loop through the transaction). In a node on the
currently added level, however, we increment a counter instead of proceeding
to a child node. In this way on the current level all counters for itemsets that
are part of a transaction are properly incremented.

By sorting the items in a transaction, we can also apply the following
optimizations (this is a bit more difficult—or needs additional memory—if
hash tables are used to organize the counters and thus explains why we are
not considering hash tables): (1) We can directly skip all items before the
first item for which there is a counter in the node, and (2) we can abort the
recursion if the first item of (the remainder of) a transaction is beyond the
last one represented in the node. Since we grow the tree level by level, we can
even go a step further: We can terminate the recursion once (the remainder
of) a transaction is too short to reach the level currently added to the tree.

6 Transaction Representation

The most simple way of processing the transactions is to handle them in-
dividually and to apply to each of them the recursive counting procedure
described in the previous section. However, the recursion is a very expensive
procedure and therefore it worth considering how it can be improved. One
approach is based on the fact that often there are several similar transactions,
which lead to a similar program flow when they are processed. By organizing
the transactions into a prefix tree (an idea that has also been used by Han et
al. (2000) in a different approach) transactions with the same prefix can be
processed together. In this way the procedure for the prefix is carried out only
once and thus considerable performance gains can result. Of course, the gains
have to outweigh the additional cost of constructing such a transaction tree.
This extension, however, is also not yet incorporated in the in the publicly
available version of our program (version 4.0 at the time of this writing).

7 Experimental Results

We conducted several experiments in order to study the effects of the different
optimizations we discussed above. The results we present here were selected,
because they demonstrate these effects most clearly.

item sorting node transaction transaction | subset memory
structure | representation | prep. (s) check (s) | used (Mb)
none vector individually — 30.5 152.1
indiv., descending | vector individually — 36.1 171.2
indiv., ascending | vector individually — 26.2 103.2
pairs, descending | vector individually — 23.9 83.5
pairs, ascending | vector individually — 18.9 63.3
none dynamic | individually — 37.6 51.2
indiv., descending | dynamic | individually — 44.3 50.8
indiv., ascending |dynamic |individually — 33.8 52.6
none vector prefix tree 0.1 24.1 152.1
indiv., descending | vector prefix tree 0.1 31.5 171.2
indiv., ascending | vector prefix tree 0.1 16.2 103.2
none dynamic | prefix tree 0.1 28.6 51.2
indiv., descending | dynamic | prefix tree 0.1 38.0 50.8
indiv., ascending |dynamic | prefix tree 0.1 20.4 52.6

Table 1. Results on the webview dataset (max. 8 items, min. support 0.056%).

item sorting node transaction transaction | subset memory
structure | representation | prep. (s) check (s) | used (Mb)
none vector individually — 187.9 167.4
indiv., descending | vector individually — 173.4 66.3
indiv., ascending | vector individually — 80.3 67.5
pairs, descending | vector individually — 176.4 73.5
pairs, ascending | vector individually — 89.0 69.6
none dynamic | individually — 219.1 59.8
indiv., descending | dynamic | individually — 205.2 52.6
indiv., ascending | dynamic |individually — 80.8 67.4
none vector prefix tree 0.2 30.3 167.4
indiv., descending | vector prefix tree 0.2 22.9 66.3
indiv., ascending | vector prefix tree 0.2 27.6 67.5
none dynamic | prefix tree 0.2 42.7 59.8
indiv., descending | dynamic | prefix tree 0.2 32.6 52.6
indiv., ascending |dynamic | prefix tree 0.2 28.2 67.4

Table 2. Results on the census dataset (max. 8 items, min. support 0.05%).

We used two datasets: The BMS-webview-1 dataset, which was also used
as a benchmark by Zheng et al. (2001) and which is derived from the KDD-
Cup 2001 data [Kohavi et al. (2000)]. In contains clickstream data from
Gazelle.com, a small legcare company, which no longer exists. Each transac-
tion describes a web session consisting of all the product detail pages viewed.
The second dataset is the well-known census dataset (also known as adult
dataset) from the UCI machine learning repository [Blake and Merz (1998)],
which contains data from the US Census Bureau. Each record of this dataset
describes one tax payer. We prepocessed this dataset by discretizing numeric
attributes and replacing the values of a record by expressions of the form “at-
tribute=value”’. These two dataset exhibit very different characteristics and
are thus very well suited to show the differences between the optimizations
studied above.

The results of our experiments are shown in Table 1 for the webview dataset

and in Table 2 for the census dataset. The fixed parameters are a maximum
number of eight items per frequent itemset for both datasets and a minimal
support value of 0.056% for the webview dataset and a minimal support value
of 0.05% for the census dataset. The other parameters used are indicated in
the first columns of the tables. Item sorting refers to whether items were
sorted based on individual frequencies or on number of frequent pairs they
are part of. The node structure is either a pure counter vector or a dynamic,
memory minimizing choice between the options discussed above. The third
column states whether transactions were processed individually or organized
into a prefix tree. All times were measured on an AMD Athlon Thunder-
bird 1.33GHz system running S.u.S.E. Linux 7.3. The apriori program was
compiled with gcc version 2.95.3. The memory used for the itemset tree was
computed using an estimate for the overhead of the memory management
system. It is consistent with output of the top system utility.

From these tables it can be seen that sorting the items can considerably
reduce memory usage as well as processing time, with ascending sorting far-
ing best (conjectured reason: it leads to more nodes having shorter vectors
thus mitigating the gap problem). Considering frequent pairs is not neces-
sarily better than sorting w.r.t. individual frequencies. The dynamic node
structure leads to minimal memory usage, but often at a considerable loss
in performance. The gains from organizing the transactions in a prefix tree
clearly outweigh the construction costs. In addition, with prefix trees, the
performance loss of the memory minimization is less severe.

8 Conclusions

In this paper we discussed several ways to optimize the performance of the
classic apriori algorithm for inducing association rules. As our experimental
results confirm, considerable performance improvements can be achieved with
relatively simple modifications. However, which optimizations are best for a
given problem can depend heavily on the dataset used.

References

Agrawal, R., Imielienski, T., and Swami, A. (1993). Mining Association
Rules between Sets of Items in Large Databases. In: Proc. Conf. on Man-
agement of Data, 207-216. New York: ACM Press

Agrawal, A., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. (1996).
Fast Discovery of Association Rules. In: Fayyad et al. (1996), 307-328

Blake, C.L. and Merz, C.J. (1998). UCI Repository of Machine Learning
Databases. Dept. of Information and Computer Science, University of
California at Irvine
http://www.ics.uci.edu/ mlearn/MLRepository.html

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., eds.
(1996). Advances in Knowledge Discovery and Data Mining. Cambridge:
AAAT Press / MIT Press

Han, J., Pei, J., and Yin, Y. (2000). Mining Frequent Patterns without
Candidate Generation. In: Proc. Conf. on the Management of Data (SIG-
MOD’00, Dallas, TX). New York: ACM Press

Kohavi, R., Bradley, C.E., Frasca, B., Mason, L., and Zheng, Z. (2000).
KDD-Cup 2000 Organizers’ Report: Peeling the Onion. SIGKDD Explo-
ration 2(2):86-93.

Zheng, Z., Kohavi, R., and Mason, L. (2001). Real World Performance of
Association Rule Algorithms. In: Proc. 7th Int. Conf. on Knowledge Dis-
covery and Data Mining (SIGKDD’01). New York: ACM Press

