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Abstract: In this paper we consider the problem of inducing causal relations from
statistical data. Although it is well known that a correlation does not justify the claim of
a causal relation between two measures, the question seems not to be settled. Research
in the field of Bayesian networks revived an approach suggested in [16]. It is based
on the idea that there are relationships between the causal structure of a domain and
its corresponding probability distribution, which could be exploited to infer at least
part of the causal structure from a set of dependence and independence statements.
This idea was developed into the inductive causation algorithm [14]. We review this
algorithm and examine the assumptions underlying it.

1 Introduction

If A causes B, an occurrence of A should be accompanied or (closely) followed
by an occurrence of B. That causation implies conjunction is the basis of all
reasoning about causation in statistics. But is this enough to infer causal relations
from statistical data, and, if not, are there additional assumptions that provide
reasonable grounds for such inference? These are the questions we discuss here.

An appropriate framework for such a discussion is the theory of Bayesian
networks. Research in this field is influenced from two directions. In the first
place, Bayesian networks are studied on purely statistical grounds as one of
several approaches to make reasoning in multi-dimensional domains feasible by
decomposing the uncertainty information available about the domain [9]. Among
such approaches, Bayesian networks [15] and Markov networks [11] are the best
known probabilistic methods. Others include the more general valuation-based
networks [19] and possibilistic networks [10, 3].

Secondly, Bayesian networks are studied as descriptions of a structure of
causal influences. Since they use conditional probability distributions which pos-
sess an inherent direction, the idea suggests itself to “direct” the distributions
in such a way that they represent the causal influences. Indeed, human experts
often start from a causal model of the underlying domain and choose the condi-
tional probability distributions of the Bayesian network accordingly.

Therefore, in Bayesian networks, statistics and causal modeling are conjoined.
This is emphasized by the d-separation criterion [15, 4], which allows us to read
the probabilistic dependences and independences from the causal structure un-
derlying a Bayesian network. In the sequel an algorithm, the so-called inductive
causation algorithm [14], was suggested to invert this procedure and to infer at



least part of the causal structure from observed dependences and independences.
This algorithm and its assumptions form the core of our discussion.

In section 2 we consider the connection of correlation and causation in gen-
eral. Since a single correlation is not enough to infer a causal relation, we turn
to the probabilistic and the causal structure of several variables in section 3.
In section 4 we state the d-separation criterion and the stability assumption,
which connect the causal to the probabilistic structure. In section 5 we review
the inductive causation algorithm and, in section 6, discuss the assumptions
underlying it. Finally, in section 7, we draw conclusions from our discussion.

2 Correlation and Causation

Correlation is perhaps the most frequently used concept in applied statistics.
Its standard measure is the correlation coefficient, which assesses what can be
called the intensity of linear relationship between two measures. Correlation is
closely related to probabilistic dependence. However, the two concepts are not
identical, because zero correlation does not imply independence. But since this
difference is of no importance for our discussion, we use the term “correlation”
in the vernacular sense, i.e., as a synonym for (probabilistic) dependence.

Note that neither in the narrower statistical nor in the wider vernacular sense
correlation is connected directly to causal relation. We usually do not know why
a correlation exists or does not exist, only that it is present or not. Nevertheless
such erroneous interpretation is tempting [5]:

Much of the fascination of statistics lies embedded in a gut feeling — and never
trust a gut feeling — that abstract measures summarizing large tables of data
must express something more real and fundamental than the data itself. (Much
professional training in statistics involves a conscious effort to counteract this gut
feeling.) The technique of correlation has been particularly subject to such misuse
because it seems to provide a path for inferences about causality. [...] [But t]he
inference of cause must come from somewhere else, not from the simple fact of
correlation — though an unexpected correlation may lead us to search for causes
so long as we remember that we may not find them. [...] The invalid assumption
that correlation implies cause is probably among the two or three most serious and
common errors of human reasoning.

It is easily demonstrated that indeed the vast majority of all correlations are,
without doubt, noncausal. Consider, for example, the distance between the con-
tinents America and Europe over the past twenty years (or any other suitable
period). Due to continental drift this distance increases a few centimeters ev-
ery year. Consider also the average price of Swiss cheese in the United States
over the same period.1 The correlation coefficient of these two measures is close
to 1, i.e., even in the narrow statistical sense they are strongly correlated. But
obviously there is no causal relation whatsoever between them.
1 We do not know much about the average price of Swiss cheese in the United States

over the past twenty years, but we assume that it has risen. If it has not, substitute
the price of any other consumer good that has.



Of course, we could have used also a lot of other measures that increased
over the past years, for example, the distance of Halley’s comet (since its last
visit in 1986) or the reader’s age. The same can be achieved with measures that
decreased over the past years. Therefore, causality may neither be inferred from
correlation with certainty (since there are counterexamples), nor even inferred
with a high probability (since causal correlations themselves are fairly rare).

According to these arguments it seems to be a futile effort to try to in-
fer causation from observed dependences. Indeed, there is no way to causation
from a single correlation (i.e., a dependence between two variables). But this
does not exclude immediately the possibility to infer from a set of (conditional)
dependences and independences between several variables something about the
underlying causal influences. There could be connections between the causal and
the probabilistic structure, which enable us to discover the former at least partly.

3 Probabilistic and Causal Structure

From the point of view of statistics the basic idea underlying Bayesian networks
is that a probability distribution P on a multi-dimensional domain can, under
certain conditions, be decomposed into a set {P1, . . . , Pn} of (conditional) dis-
tributions on lower-dimensional subspaces. Such a decomposition rests on two
things: the chain rule of probability and a set of (conditional) independence
statements. Let U = {X1, . . . , Xn} be a set of discrete random variables. Then
the chain rule of probability states that ∀x1 ∈ dom(X1), . . ., xn ∈ dom(Xn) :

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|x1, . . . , xi−1).

where P (x1, . . . , xn) is short for P (X1 = x1, . . . , Xn = xn), etc. If a set of con-
ditional independence statements is given, this factorization can sometimes be
significantly simplified. Thus one arrives at ∀x1 ∈ dom(X1), . . ., xn ∈ dom(Xn) :

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|πpar(Xi)(x1, . . . , xi−1)),

where πS(I) denotes the projection of an instantiation I of a set of random
variables to the variables in S and par(Xi) ⊆ {X1, . . . , Xi−1} is chosen in
such a way that Xi ⊥⊥ {X1, . . . , Xi−1}\par(Xi) | par(Xi), i.e., that ∀x1 ∈
dom(X1), . . . , xi ∈ dom(Xi) : P (xi|πpar(Xi)(x1, . . . , xi−1)) = P (xi|x1, . . . , xi−1).

Such a factorization is usually represented by a directed acyclic hypergraph,
in which each node represents a random variable and each hyperedge represents
a conditional probability distribution. We need hyperedges, which connect more
than two nodes, since in general a variable is conditioned on more than one
other variable. But since each node can have at most one hyperedge leading to
it, one may also use a normal directed graph. In this case all parent nodes of
a given node are in the condition part of the distribution for that node. This
directed (hyper)graph we call a probabilistic structure P. It is obvious that it is
not unique, since it depends on the ordering of the variables.
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Fig. 1. Causal (left) and probabilistic
structure (right) of the lawn example

We now turn to the causal structure of a domain. Our intuition of causation
is perhaps best captured by a binary predicate “X (directly) causes Y ” or “X
has a (direct) causal influence on Y ”, where X is the cause and Y the effect. This
predicate is usually seen as antisymmetric, i.e., if “X (directly) causes Y ” holds,
then “Y (directly) causes X” does not hold. Thus there is an inherent direction
in causal influence, which seems to be a characteristic property of causation. For
the most part it is due to our intuition that a cause precedes its effect in time.

Another formal interpretation is that an effect is as a function of its cause.
But we reject this interpretation for several reasons. The first is that it brings
in an assumption through the back door, which we want to make explicit (see
section 6). Secondly, a function is not necessarily antisymmetric and thus cannot
always represent the direction of causation. Thirdly, if one variable is a function
of another, then there need not be a causal connection (see section 2). Hence
functional dependence and causal influence should not be identified.

Because of the inherent direction, we can use a directed hypergraph to repre-
sent causal influences. (Where a hyperedge shows that a conjunction of causes
is needed, and separate (normal) edges show, that each of several causes can
lead to an effect. However, usually no harm is done, if a hyperedge is split into
a set of normal edges.) This structure we call the causal structure C. In princi-
ple directed loops, i.e., circular causal influences, are possible. (Such cycles are
often exploited for control mechanisms, for example Watt’s conical pendulum
governor of the steam engine.) Nevertheless we do not consider circular causal
structures, but assume that the causal influences form a directed acyclic graph.

A very simple and often used example is the following [15]: If it rains (R),
the lawn will get wet (W ). But it will also get wet, if the sprinkler (S) is turned
on. In addition, if it rains, we will not turn on the sprinkler. Obviously, both R
and S have a causal influence on W and R has a causal influence on S (though
mediated through a human). These influences are represented by the causal
structure shown on the left of figure 1. The probabilistic structure shown on
the right in figure 1 (which, of course, is not unique) is very close to the causal
structure, its corresponding normal graph would be identical to it.

4 d-Separation and Stability

It is obvious that storing both a probabilistic structure as well as a causal struc-
ture for a given domain is redundant. For instance, a cause and one of its direct
effects should be dependent probabilistically. Thus the question arises, how the
structures can be combined. The most promising approach seems to be to look
for a method to read from the causal structure the independence statements that
hold in the corresponding probabilistic structure. The best-known suggestion for



such a method is the so called d-separation criterion, of which it is claimed that
it allows to determine whether two variables (or two sets of variables) are condi-
tionally independent given a set S of variables: they are, if they are d-separated
by S in the causal structure. d-separation is defined as follows [15, 4]:

Definition 1. If R1, R2, and S are three disjoint subsets of nodes in a directed
acyclic graph, then S is said to d-separate R1 from R2, iff there is no path from
a node in R1 to a node in R2 along which the following two conditions hold:
1. every node with converging edges either is in S or has a descendant in S,
2. every other node is not in S.
A path satisfying the conditions above is said to be active; otherwise it is said to
be blocked (by S). A path is a sequence of consecutive edges (of any direction).

Note that the d-separation criterion does not say anything about the dependence
or independence of R1 and R2 given S, if R1 and R2 are not d-separated by S.
Usually this is sufficient, if a Bayesian network is to be constructed, since for
applications it is not essential to find and represent all independences. However,
we need more to infer causal structure. Therefore it is assumed that in a sampled
probability distribution P̂ there exist exactly those independences that can be
read from the causal structure C using d-separation. This assumption is called
stability [14] and can be formalized as (R1 ⊥⊥ R2 | S holds in P̂ )⇔ (S d-separates
R1 and R2 in C), where R1, R2, and S are sets of variables. Note that the stability
assumption states that there is “no correlation without causation” (also known
as Reichenbach’s dictum), since between two variables that are dependent given
any set of other variables, there must be a direct causal influence.

An important property of d-separation and the stability assumption is that
they distinguish a common effect of two causes from the mediating variable in
a causal chain and from the common cause of two effects. In the structures
A → B → C and A ← B → C, A and C are independent given B, but in the
structure A → B ← C they are not. This alleged asymmetry, studied earlier in
[16], makes the inferences of the inductive causation algorithm [14] possible.

5 Inductive Causation

Even with the d-separation criterion and the stability assumption there are usu-
ally several causal structures that are compatible with the observed (conditional)
dependences and independences. The main reason is that d-separation and stabil-
ity cannot distinguish between causal chains and common causes. But in certain
situations all compatible causal structures have a common substructure. The
aim of the inductive causation algorithm is to find these invariant substructures.

The only ingredients of the inductive causation algorithm apart from the
d-separation criterion and the stability assumption are the notions of a latent
structure and of its projection. A latent structure is simply a causal structure
in which some variables are unobservable (as it is often the case in real world
problems). To handle such hidden variables, the notion of a projection of a latent
structure is introduced. The idea is to restrict the number and influence of latent
variables while preserving all dependences and independences.



Input: P̂ , a sampled distribution over U , the universe of discourse.

Output: core(P̂ ), a marked hybrid acyclic graph.

1. For each pair of variables X and Y , search for a set SXY ⊆ U\{X, Y } such that

X ⊥⊥ Y | SXY holds in P̂ , i.e., X and Y are independent in P̂ conditioned on SXY .
If there is no such SXY , place an undirected edge between the variables.

2. For each pair of non-adjacent variables X and Y with a common neighbour Z (i.e.,
Z is adjacent to X as well as to Y ), check whether Z ∈ SXY . If it is not, add
arrowheads pointing to Z, i.e., X → Z ← Y .

3. Form core(P̂ ) by recursively adding arrowheads according to the following two rules:

• If for two adjacent variables X and Y there is a strictly directed path from X to
Y not including the edge from X to Y , then add an arrowhead pointing to Y .

• If there are three variables X, Y , and Z with X and Y not adjacent, Y −Z, and
either X → Z or X ←→ Z, then direct the link Z → Y .

4. For each triplet of variables X, Y , and Z: If X and Y are not adjacent, Z → Y ,
and either X → Z or X ←→ Z, then mark the edge Z → Y .

Fig. 2. The Inductive Causation Algorithm [14]

Definition 2. [14] A latent structure L1 is a projection of another latent struc-
ture L2, if and only if
1. Every unobservable variable in L1 is a parentless common cause of exactly

two non-adjacent (i.e., not directly connected) observable variables.
2. For every stable distribution P2 which can be generated by L2, there exists a

stable distribution P1 generated by L1 such that ∀X, Y ∈ O,S ⊆ O\{X, Y } :
(X ⊥⊥ Y | S holds in P2|O)⇒ (X ⊥⊥ Y | S holds in P1|O), where O is the set
of observable variables and P |O denotes the marginal probability distribution
on these variables.

(A stable distribution satisfies the stability assumption, i.e., exhibits only those
independences identifiable by the d-separation criterion.)

It can be shown that for every latent structure there is at least one projection.
Note that a projection must exhibit only the same (in)dependence structure
(w.r.t. d-separation), but need not be able to generate the same distribution.2 In
essence, the notion of a projection is only a technical trick to be able to represent
dependences that are due to latent variables by bidirected edges (which are an
intuitive representation of a hidden common cause of exactly two variables).

One thus arrives at the inductive causation algorithm [14] shown in figure 2.
Step 1 determines the variable pairs between which there must exist a direct
causal influence or a hidden common cause, because an indirect influence should
2 Otherwise a counterexample could easily be found: Consider seven binary variables

A, B, C, D, E, F , and G, i.e., dom(A) = dom(B) = . . . = dom(G) = {0, 1}. Let
A be hidden and E = A · B, F = A · C, and G = A · D. A projection of this
structure contains three latent variables connecting E and F , E and G, and F and
G, respectively. It is easy to prove that such a structure cannot generate a stable
probability distribution that can be generated by the original structure.
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enable us to find a set S that renders the two variables independent. In step 2
the asymmetry inherent in the d-separation criterion is exploited to direct edges
towards a common effect. Part 1 of step 3 ensures that the resulting structure
is acyclic. Part 2 uses the fact that Y → Z is impossible, since otherwise step 2
would have already directed the edge in this way. Finally, step 4 marks those
unidirected links that cannot be replaced by a hidden common cause (based on
similar grounds as part 2 of step 3). The output core has four kinds of edges:
1. marked unidirected edges representing genuine causal influences (which must

be direct causal influences in a projection),
2. unmarked unidirected edges representing potential causal influences (which

may be direct causal influences or brought about by a hidden common cause),
3. bidirected edges representing spurious associations (which are due to a hidden

common cause in a projection), and
4. undirected edges representing unclassifiable relations.

6 Critique of the Underlying Assumptions

In this section we discuss the assumptions underlying d-separation and stability
by considering some special cases with only few variables. The simplest case are
causal chains, like the one shown in figure 3.a. If a variable has a direct causal
influence on another, they should be dependent at least unconditionally, i.e.,
A ⊥6⊥ B | ∅ and B ⊥6⊥ C | ∅. It is also obvious, that A ⊥⊥ C | {B}. A direct
cause, if fixed, should shield the effect from any change in an indirect cause,
since a change in the indirect cause can influence the effect only by changing
the direct cause. But to decide whether B and C are dependent given A or not,
we need to know the causal influences in more detail. For instance, if B = f(A)
and C = g(B), then B ⊥⊥ C | A. But if the value of A does not completely
determine the value of B (just as the rain did not completely determine the state
of the sprinkler in the lawn example), then B and C will usually be dependent.
Although the former is not uncommon, the stability assumption excludes it.

The next cases are diverging or converging causal influences, like those shown
in figures 3.b and 3.c. The main problems with these structures are whether
B ⊥⊥ C | {A} (in 3.b) and A ⊥⊥ B | {C} (in 3.c) hold or not. The assumptions
by which d-separation and the stability assumption handle this difficulty are:

Common Cause Assumption (Causal Markov Assumption).
Given all of their (direct or indirect) common causes, two effects are independent,
i.e., in figure 3.b the variables B and C are independent given A. If B and C are
still dependent given A, it is postulated that either B has a causal influence on
C or vice versa or there is another (hidden) common cause of B and C (apart
from A). That is, the causal structure is considered to be incomplete.
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Common Effect Assumption.
Given one of their (direct or indirect) common effects, two causes are dependent,
i.e., in figure 3.c the variables A and B are dependent given C. For applications,
this assumption is less important than the previous one, since nothing is lost, if
it is assumed that A and B are dependent given C though they are not. Only
the storage savings resulting from a possible decomposition cannot be exploited.

Note that the common cause assumption necessarily holds, if causation is inter-
preted as functional dependence. Then it only says that fixing all the arguments
that (directly or indirectly) enter both functions associated with the two effects
renders the effects independent. But this is obvious, since any variation still pos-
sible has to be due to independent arguments that enter only one function. This
is the main reason why we rejected this interpretation of causation. It is not at
all obvious that causation should satisfy the common cause assumption.

A situation with diverging causal influences also poses another problem: Are
B and C independent unconditionally? In most situation they are not, but if, for
example, dom(A) = {0, 1, 2, 3}, dom(B) = dom(C) = {0, 1} and B = A mod 2,
C = A div 2, then they will be. The stability assumption rules out this possibility.

The two assumptions also interact and this can lead to a priority problem.
For example in figure 4: Given A as well as D, are B and C independent? The
common cause assumption affirms this, the common effect assumption denies it.
Since the stability assumption requires B and C to be dependent, it contains the
assumption that in case of a tie the common effect assumption has the upper
hand. Note that from strict functional dependence B ⊥⊥ C | {A,D} follows.

In the following we examine some of the assumption identified above in more
detail, especially the common cause and the common effect assumption.
Common Cause Assumption (Causal Markov Assumption)
Consider an arrangement of tubes like the one shown in figure 5.a. If a ball is
dropped into this arrangement, it will reappear at one of the two outlets. If we
neglect the time it takes the ball to travel through the tubes, we can define three
binary variables T , L, and R indicating whether there is a ball at the top T , at
the left outlet L or at the right outlet R. Obviously, whether there is a ball at T
or not has a causal influence on L and on R. But L and R are dependent given
T , because the ball can reappear only at one outlet.

At first sight the common cause assumption seems to fail in this situation.
However, we can always assume that there is a hidden common cause, for in-
stance, an imperfectness of the ball or the tubes. If we knew the state of this
cause, the outlet at which the ball will reappear could be determined and hence
the common cause assumption would hold. Obviously, if there is a dependence
between two effects, we can always say that there must be another hidden com-
mon cause. We just did not find it, because we did not look hard enough. Since
this is a statement of existence, it cannot be disproven.
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Fig. 5. a) Y-shaped tube arrangement into which a ball is dropped. Since it can reap-
pear only at L or at R, but not at both, the corresponding variables are dependent.
b) Billiard with round obstacles exhibits sensitive dependence on the initial conditions.

The idea that, in principle, we could discover the causes that determine the
way the ball goes is deeply rooted in the mechanistic paradigm of physics, which
is perhaps best symbolized by Laplace’s demon.3 But quantum theory suggests
that such a view is wrong [1, 13]: It may very well be that even if we look hard
enough, we will not find a hidden common cause to explain the dependence.

To elaborate a little: Among the basic statements of quantum mechanics
are Heisenberg’s uncertainty relations. One of these states that 4x · 4px ≥ h̄

2 .
That is, we cannot measure both the location x and the momentum px of a
particle with arbitrary precision in such a way that we can predict its exact
trajectory. There is a finite upper bound due to the unavoidable interaction
with the observed particle. However, in our example we may need to predict the
exact trajectory of the ball in order to determine the outlet with certainty.

The objection may be raised that h̄
2 is too small to have any observable in-

fluence. To refute this, we could add to our example an “uncertainty amplifier”
based on the ideas studied in chaos theory, i.e., a system that exhibits a sensitive
dependence on the initial conditions. A simple example is billiard with round
obstacles [17], as shown in figure 5.b. The two trajectories of the billiard ball b,
which in the beginning differ only by about 1

100 degree, differ by about 100 de-
grees after only four collisions. (This is a precisely computed example, not a
sketch.) Therefore, if we add a wider tube containing spheres or semi-spheres in
front of the inlet T , it is plausible that even a tiny change of the position or the
momentum of the ball at the new inlet may change the outlet at which the ball
will reappear. Therefore quantum mechanical uncertainty cannot be neglected.

Another objection is that there could be “hidden parameters”, which, if dis-
covered, would remove the statistical nature of quantum mechanics. However,
as [13] showed4, this is tantamount to claiming that quantum mechanics is false
— a claim for which we do not have any convincing evidence.
3 Laplace wrote [7]: “We may regard the present state of the universe as the effect of

its past and the cause of its future. An intellect which at any given moment knew all
the forces that animate nature and the mutual positions of the beings that compose
it, if this intellect were vast enough to submit the data to analysis, could condense
into a single formula the movement of the greatest bodies of the universe and that
of the lightest atom: for such an intellect nothing would be uncertain; and the future
just like the past would be present before its eyes.”

4 v. Neumann wrote: “[...] the established results of quantum mechanics can never be
re-derived with their [the hidden parameters’] help. In fact, we have even ascertained
that it is impossible that the same physical quantities exist with the same function



murderer death other
∑

black 59 2448 2507
white 72 2185 2257∑

131 4633 4764

Table 1. Death sentencing and race in Florida
1973–1979. The hypothesis that the two vari-
ables are independent can be rejected only
with an error probability greater than 7.8%
(according to a χ2 test).

victim murderer death other

black black 11 2209
white 0 111

white black 48 239
white 72 2074

Table 2. Death sentencing and race in Florida
1973–1979, full table. For white victims the hy-
pothesis that the two other variables are inde-
pendent can be rejected with an error proba-
bility less than 0.01% (according to a χ2 test).

Ma� Va Sa� Fig. 6. Core inferred by the inductive causa-
tion algorithm for the above data.

Common Effect Assumption
According to Salmon [18], it seems to be hard to come up with an example in
which the common effect assumption does not hold. Part of the problem seems
to be that most macroscopic phenomena are described by continuous real-valued
functions, but there is no continuous n-ary function, n ≥ 2, which is injective
(and would be a simple, though not the only possible counterexample).

However, there are real world examples that come close, for instance, statis-
tical data concerning death sentencing and race in Florida 1973–1979 (according
to [8] as cited in [22]). From table 1 it is plausible to assume that murderer and
sentence are independent. Splitting the data w.r.t. victim shows that they are
strongly dependent given this variable (see table 2). Hence the inductive cau-
sation algorithm yields the causal structure shown in figure 6. But this is not
acceptable: A direct causal influence of sentence on victim is obviously impos-
sible (since the sentence follows the murder in time), while a common cause is
hardly imaginable. The most natural explanation of the data, namely that victim
has a causal influence on sentence, is explicitly ruled out by the algorithm.

This example shows that an argument mentioned in [14] in favour of the
stability assumption is not convincing. It refers to [20], where it is shown that,
if the parameters of a distribution are chosen at random from any reasonable
distribution, then any unstable distribution has measure zero. But the problem
is that this is not the correct set of distributions to look at. When trying to infer
causal influence, we have to take into account all distributions that could be
mistaken for an unstable distribution. Indeed, the true probability distribution
in our example may very well be stable, i.e., murderer and sentence may actually

connections [...], if other variables (i.e., “hidden parameters”) should exist in addition
to the wave functions. Nor would it help if there existed other, as yet undiscovered
physical quantities, [...], because the relations assumed by quantum mechanics [...]
would have to fail already for the known quantities [...] It is therefore not, as often
assumed, a question of a re-interpretation of quantum mechanics, — the present
system of quantum mechanics would have to be objectively false, in order that
another description of the elementary processes than the statistical one be possible.”
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be marginally dependent. But the distribution in the sample is so close to an
independent distribution that it may very well be confused with one.
In addition, the special parameter assignments leading to unstable distributions
may have high probability. For example, it would be reasonable to assume that
two variables are governed by the same probability distribution, if they were
the results of structurally equivalent processes. Yet such an assumption can lead
to an unstable distribution, especially in a situation, in which common cause
and common effect assumption interact. For instance, for a Fredkin gate [2]
(a universal gate for computations in conservative logic, see figure 7), the two
outputs C and D are independent, if the two inputs A and B assume value 1 with
the same probability. In this case, as one can easily verify, the causal direction
assigned to the connection A—C depends on whether the variables A, B, and
C or the variables A, C, and D are observed.

7 Conclusions

The discussion of the assumptions underlying the inductive causation algorithm
showed that at least some of them can be reasonably doubted. In addition, the
inductive causation algorithm cannot deal adequately with accidental correla-
tions. But we saw in section 2 that we sometimes reject a causal explanation in
spite of the statistical data supporting such a claim. In our opinion it is very
important for an adequate theory of causation to explain such a rejection.5 In
summary, when planning to apply this algorithm, one should carefully check
whether the assumptions can be accepted and whether the underlying interpre-
tation of causality is adequate for the problem at hand.

A related question is: Given a causal relation between two variables, we are
usually much more confident in an inference from the state of one of them to the
state of the other than we would be, if our reasoning was based only on a number
of similar cases we observed in the past. But the inductive causation algorithm
infers causation from a set of past observations, namely a sampled probability
distribution. If the result is not substantiated by other means, can we be any
more confident in our reasoning than we would be, if we based it directly on
the observed correlations? It seems to be obvious that we can not. Hence the
question arises whether the inductive causation algorithm is more than just a
heuristic method to point out possible causal connections, which than have to be
further investigated. Of course, this does not discredit the inductive causation
algorithm, since good heuristics are a valuable thing to have.
5 An approach to causation that does not suffer from this deficiency was suggested by

Lorenz and later developed e.g. in [21]. It models causal connections as a transfer of
energy. [12] suggests a closely related model.
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