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Abstract

We study methods to initialize or bias different
clustering methods using prior information about
the “importance” of a keyword w.r.t. the whole
document collection or a specific cluster. These
studies give us hints on how to initialize clus-
tering methods in order to improve performance
if prior knowledge is available. This can be es-
pecially useful if a user-specific clustering of a
document collection or web search result set is
desired. Furthermore, we discuss whether one
should draw on information measures to extract
keywords that can be used as describing features
for document clusters.

1 Introduction
The problem of finding descriptive weights for terms in
document collections in order to improve retrieval perfor-
mance has been studied extensively in the past (see, for
instance,[12; 24; 23]). To achieve an improved classifica-
tion or clustering performance for a given text collection
it is usually necessary to select a subset of all describing
features (i.e. keywords) and/or to re-weight the features
w.r.t. a specific classification or clustering goal. Conse-
quently, several studies were conducted in this direction.
For example, it was explored how to select keywords based
on statistical and information theoretical measures[9; 21;
28] or how to combine clustering and keyword weight-
ing techniques[10] in order to improve the clustering per-
formance. Nevertheless, it is still unclear to what extend
term re-weighting influences the clustering performance
and whether initial—global or cluster specific—term re-
weighting can be used to bias or improve the clustering per-
formance. Therefore, in the following, we compare cluster-
ing with and without term re-weighting techniques using
different hard and fuzzy clustering methods. Furthermore,
by interpreting the resulting cluster prototypes (cluster cen-
ters), we discuss briefly whether one should draw on infor-
mation theoretical measures to extract keywords that can
be used to appropriately describe a cluster.

This paper is organized as follows: In Section 2 we
briefly review some basics of fuzzy clustering and trans-
fer fuzzy clustering ideas to learning vector quantization.
In Section 3 we review pre-processing methods for docu-
ments and in particular the vector space model, which we
use to represent documents. In Section 4 we present our ex-
perimental results of clustering web page collections using
different weighting approaches and finally, in Section 5, we
draw conclusions from our discussion.

2 Clustering

It is not difficult to see that classicalc-means clustering[7;
4] and standardlearning vector quantizationapplied to
clustering[17; 18] are very similar: a point that one method
converges to is a stable point of the other, in particular,
if learning vector quantization is applied in batch mode.
Since classicalc-means clustering has been generalized to
fuzzy clustering[1; 2; 14], the idea suggests itself to trans-
fer some ideas that have been developed in fuzzy clustering
to competitive learning, with the aim of achieving a higher
flexibility. The basic idea of this transfer is that the up-
date of a reference vector in competitive learning can be
seen as an exponential decay of information gained from
data points processed in earlier steps—a scheme that may
just as well be applied to a covariance matrix describing the
size and shape of a cluster.

Such online clustering has at least two advantages for
the application domain we are concerned with here, that is,
for clustering collections of documents. The first is that,
due to the fact that the cluster parameters are updated more
often, while the greater part of the overhead comes from
the computations of the distances between the data points
and the cluster centers, it can be faster than standard fuzzy
clustering. Secondly, this approach to clustering makes it
easier to handle documents that become available in a true
online fashion, because updates need only few documents,
not the whole collection.

In the following, we briefly review fuzzy clustering and
learning vector quantization as we use it in our experi-
ments. For a more detailed discussion and evaluation of
these methods for document clustering see[5].

2.1 Fuzzy Clustering

While most classical clustering algorithms assign each da-
tum to exactly one cluster, thus forming a crisp partition of
the given data, fuzzy clustering allows fordegrees of mem-
bership, to which a datum belongs to different clusters[1;
2; 14]. Most fuzzy clustering algorithms are objective func-
tion based: they determine an optimal (fuzzy) partition of a
given data setX = {~xj | j = 1, . . . , n} into c clusters by
minimizing an objective function

J(X,U,C) =
c∑

i=1

n∑
j=1

uw
ijd

2
ij

subject to the constraints

n∑
j=1

uij > 0, for all i ∈ {1, . . . , c}, and (1)



c∑
i=1

uij = 1, for all j ∈ {1, . . . , n}, (2)

whereuij ∈ [0, 1] is the membership degree of datum~xj to
clusteri anddij is the distance between datum~xj and clus-
ter i. Thec × n matrix U = (uij) is called thefuzzy par-
tition matrix andC describes the set of clusters by stating
location parameters (i.e. the cluster center) and maybe size
and shape parameters for each cluster. The parameterw,
w > 1, is called thefuzzifieror weighting exponent. It de-
termines the “fuzziness” of the classification: with higher
values forw the boundaries between the clusters become
softer, with lower values they get harder. Usuallyw = 2
is chosen. Hard clustering results in the limit forw → 1.
However, a hard assignment may also be determined from
a fuzzy result by assigning each data point to the cluster to
which it has the highest degree of membership.

Constraint (1) guarantees that no cluster is empty and
constraint (2) ensures that each datum has the same total
influence by requiring that the membership degrees of a
datum must add up to 1. Because of the second constraint
this approach is usually calledprobabilistic fuzzy cluster-
ing, since with it the membership degrees for a datum for-
mally resemble the probabilities of its being a member of
the corresponding clusters. The partitioning property of a
probabilistic clustering algorithm, which “distributes” the
weight of a datum to the different clusters, is due to this
constraint.

Unfortunately, the objective functionJ cannot be min-
imized directly. Therefore an iterative algorithm is used,
which alternately optimizes the membership degrees and
the cluster parameters[1; 2; 14]. That is, first the mem-
bership degrees are optimized for fixed cluster parameters,
then the cluster parameters are optimized for fixed mem-
bership degrees. The main advantage of this scheme is that
in each of the two steps the optimum can be computed di-
rectly. By iterating the two steps the joint optimum is ap-
proached (although, of course, it cannot be guaranteed that
the global optimum will be reached—the algorithm may
get stuck in a local minimum of the objective functionJ).

The update formulae are derived by simply setting the
derivative of the objective functionJ w.r.t. the parameters
to optimize equal to zero (necessary condition for a min-
imum). Independent of the chosen distance measure we
thus obtain the following update formula for the member-
ship degrees[14]:

uij =
d
− 2

w−1
ij∑c

k=1 d
− 2

w−1
kj

, (3)

that is, the membership degrees represent the relative in-
verse squared distances of a data point to the different clus-
ter centers, which is a very intuitive result.

The update formulae for the cluster parameters, however,
depend on what parameters are used to describe a cluster
(location, shape, size) and on the chosen distance measure.
Therefore a general update formula cannot be given. Here
we briefly review the three most common cases: The best-
known fuzzy clustering algorithm is the fuzzyc-means al-
gorithm, which is a straightforward generalization of the
classical crispc-means algorithm. It uses only cluster cen-
ters for the cluster prototypes and relies on theEuclidean
distance, i.e.,

d2
ij = d2(~xj , ~µi) = (~xj − ~µi)>(~xj − ~µi),

where~µi is the center of thei-th cluster. Consequently it
is restricted to finding spherical clusters of equal size. The
resulting update rule is

~µi =

∑n
j=1 uw

ij~xj∑n
j=1 uw

ij

, (4)

that is, the new cluster center is the weighted mean of the
data points assigned to it, which is again a very intuitive
result.

The Gustafson-Kessel algorithm[13] uses theMaha-
lanobis distance, i.e.,

d2
ij = d2(~xj , ~µi) = (~xj − ~µi)>Σ−1

i (~xj − ~µi),

where~µi is the cluster center andΣi is a cluster-specific
covariance matrix with determinant 1 that describes the
shape of the cluster, thus allowing for ellipsoidal clusters
of equal size. This distance function leads to same update
rule (4) for the clusters centers. The covariance matrices
are updated according to

Σi = |Σ∗
i |−

1
m Σ∗

i where (5)

Σ∗
i =

∑n
j=1 uw

ij(~xj − ~µi)(~xj − ~µi)>∑n
j=1 uw

ij

andm is the number of dimensions of the data space.Σ∗
i

is called thefuzzy covariance matrix, which is simply nor-
malized to determinant 1 to meet the abovementioned con-
straint. Compared to standard statistical estimation proce-
dures, this is also a very intuitive result. It should be noted
that the restriction to cluster of equal size may be relaxed
by simply allowing general covariance matrices. However,
depending on the characteristics of the data, this additional
degree of freedom can deteriorate the robustness of the al-
gorithm.

Finally, the fuzzy maximum likelihood estimation
(FMLE) algorithm[11] is based on the assumption that the
data was sampled from a mixture ofc multivariate normal
distributions as in the statistical approach of mixture mod-
els[8; 3]. It uses a (squared) distance that is inversely pro-
portional to the probability that a datum was generated by
the normal distribution associated with a cluster, i.e.,

d2
ij =

(
θi√

(2π)m|Σi|
exp

(
−1

2
(~xj−~µi)>Σ−1

i (~xj−~µi)
))−1

whereθi is the prior probability of the cluster,~µi is the clus-
ter center,Σi a cluster-specific covariance matrix, which in
this case is not required to be normalized to determinant 1,
andm the number of dimensions of the data space. For
the FMLE algorithm the update rules are not derived from
the objective function due to technical obstacles, but by
comparing it to the well-known expectation maximization
(EM) algorithm[6] for a mixture of normal distributions[8;
3], which, by analogy, leads to the same update rules for
the cluster center and the cluster-specific covariance matrix
[14]. The prior probability is, in direct analogy to statistical
estimation, computed as

θi =
1
n

n∑
j=1

uw
ij . (6)

Since the high number of free parameters of the FMLE al-
gorithm renders it unstable on certain data sets, it is usu-
ally recommended[14] to initialize it with a few steps of



the very robust fuzzyc-means algorithm. The same holds,
though to a somewhat lesser degree, for the Gustafson-
Kessel algorithm.

It is worth noting that of both the Gustafson-Kessel as
well as the FMLE algorithm there exist so-calledaxes-
parallel versions, which restrict the covariance matricesΣi

to diagonal matrices and thus allow only axes-parallel el-
lipsoids[15]. These variants have certain advantages w.r.t.
robustness and execution time.

2.2 Learning Vector Quantization

Learning vector quantization[17; 18], in its classical form,
is a competitive learning algorithm that has been developed
in the area of artificial neural networks and that can be ap-
plied to classified as well as unclassified data. Here we
confine ourselves to unclassified data, where the algorithm
consists in iteratively updating a set ofc so-calledreference
vectors~µi, i = 1, . . . , c, each of which is represented by a
neuron. For each data point~xj , j = 1, . . . , n, the closest
reference vector (the so-called “winner neuron”) is deter-
mined and then this reference vector (and only this vector)
is updated according to

~µ
(new)
i = ~µ

(old)
i + η1

(
~xj − ~µ

(old)
i

)
, (7)

whereη1 is a learning rate. This learning rate usually de-
creases with time in order to avoid oscillations and to en-
force the convergence of the algorithm.

Membership degrees can be introduced into this basic
algorithm in two different ways. In the first place, one may
employ an activation function for the neurons, for which a
radial function like the

Cauchy function f(r) =
1

1 + r2
or the

Gaussian function f(r) = e−
1
2 r2

may be chosen, wherer is the (radial) distance from the
reference vector. In this case all reference vectors are up-
dated for each data point, with the update being weighted
with the value of the activation function. However, this
scheme, which is closely related topossibilistic fuzzy clus-
tering [19], usually leads to unsatisfactory results, since
there is no dependence between the clusters, so that they
tend to end up at the center of gravity of all data points.
This corresponds to the fact that in possibilistic fuzzy clus-
tering the objective function is truly minimized only if all
cluster centers are identical[27]. Useful results are ob-
tained only if the method gets stuck in a local minimum,
which is an undesirable situation.

An alternative is to rely on a normalization scheme as
in probabilistic fuzzy clustering, that is, to compute the
weight for the update of a reference vector as the relative
inverse (squared) distance from this vector (cf. the compu-
tation of the membership degrees in fuzzy clustering, see
formula (3)), or as therelativeactivation of a neuron. This
is the approach we employ here, that is, we use

~µ
(new)
i = ~µ

(old)
i + η1uij

(
~xj − ~µ

(old)
i

)
(8)

with uij defined as in equation (3). Furthermore we asso-
ciate with each neuron not only a reference vector~µi, but
also a covariance matrixΣi, which describes the shape and
(if we do not require it to be normalized to determinant 1)
the size of the represented cluster.

In order to find an update rule for this covariance ma-
trix, we observe that the above equation (7) may also be
written as

~µ
(new)
i = (1− η1) ~µ

(old)
i + η1 ~xj ,

which shows that the update can be seen as an exponen-
tial decay of information gained from data points processed
earlier. Transferring this idea to the covariance matricesΣi

and drawing on equation (5) leads directly to

Σ(new)
i = (1−η2)Σ

(old)
i +η2 (~xj−~µi)(~xj−~µi)>, (9)

whereη2 is a learning rate, which, in general, differs from
the learning rateη1 for the reference vectors. In the fuzzy
case this update may be weighted, as the update of the ref-
erence vectors, by the relative inverse (squared) distance of
the data point from the reference vector or by the relative
neuron activation.

It should be noted that versions of this algorithm that
require the covariance matrix to be normalized to determi-
nant 1 or restrict the covariance matrix to a diagonal matrix
may be considered, too. Such constraints can improve the
robustness or the execution time of the algorithm. Further-
more it should be noted that the updates may be executed
in batch mode, aggregating the changes resulting from the
data points and actually updating the reference vectors and
covariance matrices only at the end of an epoch.

Finally, it should be noted that the additional elements of
the FMLE algorithm may also be transferred to a compet-
itive learning scheme, by using the reciprocal of the spe-
cial distance function as the activation function of the neu-
rons. The additional parameterθi, that is, the weight or
prior probability of a cluster, is then updated according to

θ
(new)
i = (1− η3) θ

(old)
i + η3 uij ,

whereη3 is another learning rate (different fromη1 andη2)
anduij is defined as in equation (3). However, in the appli-
cation described below, we confine ourselves to the simpler
approach discussed above, which in addition to member-
ship degrees introduces only covariance matrices.

3 Clustering Document Collections
To be able to cluster text document collections with the
methods discussed above, we have to map the text files to
numerical feature vectors. Therefore, we first applied stan-
dard preprocessing methods, i.e., stopword filtering and
stemming (using the Porter Stemmer[22]), encoded each
document using the vector space model[23] and finally se-
lected a subset of terms as features for the clustering pro-
cess as briefly described in the following.

3.1 The Vector Space Model
The vector space model represents text documents as vec-
tors in anm-dimensional space, i.e., each documentj is de-
scribed by a numerical feature vector~xj = (xj1, . . . , xjm).
Each element of the vector represents a word of the docu-
ment collection, i.e., the size of the vector is defined by the
number of words of the complete document collection.

For a given documentj the so-called weightxjk defines
the importance of the wordk in this document with respect
to the given document collectionC. Large weights are as-
signed to terms that are frequent in relevant documents but
rare in the whole document collection[24]. Thus a weight
xjk for a termk in documentj is computed as the term
frequencytfjk times the inverse document frequencyidfk,



which describes the term specificity within the document
collection.

In [25] a weighting scheme was proposed that has mean-
while proven its usability in practice. Besides term fre-
quency and inverse document frequency (defined asidfk =
log(n/nk)), a length normalization factor is used to ensure
that all documents have equal chances of being retrieved
independent of their lengths:

xjk =
tfjk log n

nk√∑m
l=1

(
tfjl log n

nl

)2 , (10)

wheren is the size of the document collectionC, nk the
number of documents inC that contain termk, andm the
number of terms that are considered.

Based on a weighting scheme a documentj is described
by anm-dimensional vector~xj = (xj1, . . . , xjm) of term
weights and the similarityS of two documents (or the sim-
ilarity of a document and a query vector) can be computed
based on the inner product of the vectors (by which—if we
assume normalized vectors—the cosine between the two
document vectors is computed), i.e.

S(~xj , ~xk) =
m∑

l=1

xjl · xkl. (11)

For a more detailed discussion of the vector space model
and weighting schemes see, for instance,[12; 24; 23].

Note that for normalized vectors the scalar product is
not much different in behavior from the Euclidean distance,
since for two vectors~x and~y it is

cos ϕ =
~x~y

|~x| · |~y|
= 1− 1

2
d2

(
~x

|~x|
,

~y

|~y|

)
.

Although the scalar product is faster to compute, it enforces
spherical clusters. Therefore we rely on the Mahalanobis
distance in our approach.

3.2 Index Term Selection
To reduce the number of words in the vector description
we applied a simple method for keyword selection by ex-
tracting keywords based on their entropy. In the approach
discussed in[16], for each wordk in the vocabulary the
entropy as defined by[20] was computed:

Wk = 1 +
1

log2 n

n∑
j=1

pjk log2 pjk (12)

with pjk =
tfjk∑n
l=1 tf lk

,

wheretfjk is the frequency of wordk in documentj, andn
is the number of documents in the collection. Here the en-
tropy gives a measure how well a word is suited to separate
documents by keyword search. For instance, words that
occur in many documents will have low entropy. The en-
tropy can be seen as a measure of the importance of a word
in the given domain context. As index words a number of
words that have a high entropy relative to their overall fre-
quency have been chosen, i.e. of words occurring equally
often those with the higher entropy can be preferred. Em-
pirically this procedure has been found to yield a set of
relevant words that are suited to serve as index terms[16].

In order to obtain a fixed number of index terms that ap-
propriately cover the documents, we applied a greedy strat-
egy: From the first document in the set of documents select

Label Dataset Category Associated Theme

A Commercial Banks Banking & Finance
B Building Societies Banking & Finance
C Insurance Agencies Banking & Finance
D Java Programming Lang.
E C / C++ Programming Lang.
F Visual Basic Programming Lang.
G Astronomy Science
H Biology Science
I Soccer Sport
J Motor Racing Sport
K Sport Sport

Table 1: Categories and Themes of the used benchmark
data set of web pages.

the term with the highest relative entropy as an index term.
Then mark this document and all other documents contain-
ing this term. From the first of the remaining unmarked
documents select again the term with the highest relative
entropy as an index term. Then mark again this document
and all other documents containing this term. Repeat this
process until all documents are marked, then unmark all of
them and start again. The process can be terminated when
the desired number of index terms have been selected.

4 Experiments
For our experimental studies we chose the collection of
web page documents used in[26].1 The data set consists
of 11,000 web pages classified into 11 equally-sized cat-
egories each containing 1,000 web documents. To each
category one of four distinct themes, namely Banking and
Finance, Programming Languages, Science, and Sport was
assigned as shown in Table 1.

In the following we present results we obtained using the
preprocessing strategies described above. After stemming
and stop word filtering we obtained 163,860 words. This
set was further reduced by removing terms that are shorter
than 4 characters and that occur less then 15 times or more
than11, 000/12 ≈ 917 times in the whole collection. In
this way we made sure that no words that perfectly separate
one class from another are used in the describing vectors.
From the remaining 10626 words we selected 400 words
by applying the greedy index-term selection approach de-
scribed in Section 3.2. For our clustering experiments we
selected finally subsets of the 20, 50, 100, 150, ..., 350, 400
most frequent words in the subset to be clustered. Based
on these words we determined vector space descriptions
for each document (see Section 3.1, Equation (10)) that we
used in our clustering experiments. All vectors were nor-
malized to unit length (after the subset selection).

To assess the clustering performance using term re-
weighting techniques, we computed the performance on the
same data sets used in our previous experiments[5], i.e., we
clustered the union of the dissimilar data sets A and I, and
the semantically more similar data sets B and C. In a third
experiment we used all classes and tried to find clusters de-
scribing the four main themes, i.e., banking, programming
languages, science, and sport.

For our experiments we used c-means, fuzzy clustering
and learning vector quantization methods. The learning

1This collection is available for download at
http://www.pedal.rdg.ac.uk/banksearchdataset



vector quantization algorithm updated the cluster param-
eters once for every 100 documents.2

A detailed discussion of the performance of these
methods with and without cluster centers normalized to
unit length, with and without variances (i.e., spherical
clusters and axes-parallel ellipsoids—diagonal covariance
matrices—of equal size), and with the inverse squared dis-
tance or the Gaussian function for the activation can be
found in[5]. Here, however, we focus on term re-weighting
aspects. In order to evaluate the effects of keyword weight-
ing, we computed the “importance” of each keyword for
the classification of a document to a specific class based
on different information theoretical measures. The “impor-
tance” values are then used to re-weight the terms in each
document before the clustering process is started.

4.1 Keyword Weighting by Information Gain
Information gain(also known asmutual (Shannon) infor-
mation or (Shannon) cross entropy), which is frequently
used in decision tree learning, measures the average or
expected entropy reduction resulting from finding out the
value of a specific attribute. In text categorization informa-
tion gain can be used to measure how well a term can be
used to categorize a document, i.e., it measures the entropy
reduction based on this specific term.

The information gain of a termtk for a given set of
r classesci is defined as:

Igain(tk) = −
r∑

i=1

P (ci) log2 P (ci) (13)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

+P (tk)
r∑

i=1

P (ci|tk) log2 P (ci|tk)

The information gain values are then used to re-weight the
terms of each document by computing

x∗jk = xjk ·max{Igain(tk), 10−6}. (14)

The results, obtained with cluster centers normalized to
length 1 and no (co)variances, are shown in Figures 1 to 3.
All results are the mean values of ten runs, which differed
in the initial cluster positions and the order in which doc-
uments were processed. The dotted lines show the default
accuracy (obtained if all documents are assigned to the ma-
jority class). The diamonds show the average classification
accuracy in percent (left axis) with bars indicating the stan-
dard deviation. The grey dots and lines show the average
execution times in seconds (right axis).

Re-weighting improved the performance for both two
class problems (see Figures 1 and 2). Especially for the
semantically similar data sets B and C a higher accurary
is achieved and the clustering process is much more sta-
ble for fuzzyc-means and learning vector quantization (see
the standard deviations in Figure 2). However, for the four
class problem (Figure 3) no visible gains resulted. Rather,
there is a slightly higher variation in the results of fuzzy
c-means and learning vector quantization (see the standard
deviations in Figure 3, middle row compared to top row).

2All experiments were carried out with a program written in
C and compiled with gcc 3.3.3 on a Pentium 4C 2.6GHz sys-
tem with 1GB of main memory running S.u.S.E. Linux 9.1. The
program and its sources can be downloaded free of charge at
http://fuzzy.cs.uni-magdeburg.de/˜borgelt/cluster.html.

4.2 Keyword Weighting Usingχ2

The χ2 measure, which is well known in statistics, uses
the difference of expected and observed occurrences of at-
tributes (here: terms) to measure the statistical significance
of the attribute (here: goodness of a term) with respect to
another attribute (here: the class). Theχ2 measure can be
computed based on the contingency table of a termt and
the classesci. If N is the total number of documents andr
the number of classes, it can be defined as

χ2(tk) = N
r∑

i=1

(
(P (ci)P (tk)− P (tk, ci))2

P (ci)P (tk)
(15)

+
(P (ci)P (tk)− P (tk, ci))2

P (ci)P (tk)

)
.

The resultingχ2(tk) values we used again to re-weight the
terms, i.e., similar to Equation (14) we computed

x∗jk = xjk ·max{χ2(tk), 10−6}. (16)

Since the results using theχ2 measure are almost identical
to the results obtained with information gain, we do not
show any diagrams. As it seems, both measures are equally
well suited for term re-weighting.

4.3 Keyword Selection by Information Gain
Since re-weighting the terms based on information gain and
theχ2 measure did not improve the clustering performance
in the four class case, we re-executed the experiments with
20, 50, and 100 terms, this time selecting them based on
their rank w.r.t. information gain (in all other experiments
the terms were chosen based on their frequency in the con-
sidered document set). The goal is to find out whether
the weighting did not have any effect, because the wrong
words are in the selected subset. The results are shown in
the bottom row of Figure 3 (for higher numbers of values
the results get identical to the ones shown in the middle
row). Obviously, the classification performance was im-
proved for all clustering methods, indicating that weight-
ing alone is not sufficient if the terms are selected based on
simple occurrence frequencies.

4.4 Keyword Extraction for Cluster Labeling
In order to obtain describing terms for each cluster, we
compared different keyword rankings for clustering exper-
iments for the four major themes using 200 terms. We se-
lected a typical result for this discussion.

In Table 2 the terms are sorted descendingly by their in-
formation gainIgain(tk) w.r.t. the found clusters (second
column). Columns 3 to 6, each of which corresponds to
a cluster, show the probability that termtk appears in the
corresponding cluster, with the highest probability per row
set in bold face. Going down a column and collecting the
highlighted terms yields a ranked keyword list for the cor-
responding cluster. Usingχ2(tk) for the ranking leads to
very similar results and thus we omit a separate table.

As an alternative, Table 3 shows the keyword ranking
obtained by selecting the terms with the highest weights
(largest center coordinates) for each cluster prototype. As
can be seen, the order of the keywords is very similar to that
of Table 2 (the rank differences are fairly small, at least in
the shown top part of the list). Thus, to describe a clus-
ter the terms can simply be selected from an ordered list of
the center coordinates of each cluster, which is, of course,
much more efficient than the computation of an informa-
tion measure. At least for this example, the descriptive
quality seems to be very similar.
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Figure 1: Accuracy on commercial banks versus soccer, normalized centers, fixed uniform variances (top row: no scaling,
bottom row: scaling with information gain).
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Figure 2: Accuracy on building companies versus insurance agencies, normalized centers, fixed uniform variances (top
row: no scaling, bottom row: scaling with information gain).
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Figure 3: Accuracy on major themes (four clusters), normalized centers, fixed uniform variances (top row: no scaling,
middle row: scaling with information gain, bottom row: no scaling, keyword selection based on information gain).



termt G(t) p(t|1) p(t|2) p(t|3) p(t|4)
footbal 0.143 0.001 0.299 0.007 0.004
championship 0.120 0.001 0.242 0.001 0.002
galaxi 0.118 0.003 0.002 0.001 0.270
repay 0.112 0.004 0.000 0.212 0.000
genet 0.106 0.003 0.005 0.002 0.253
season 0.100 0.011 0.277 0.018 0.027
theori 0.094 0.017 0.012 0.004 0.266
applet 0.089 0.178 0.001 0.001 0.004
pension 0.087 0.004 0.004 0.177 0.001
astronom 0.084 0.002 0.003 0.000 0.196
energi 0.080 0.010 0.022 0.009 0.249
premium 0.080 0.006 0.006 0.183 0.008
button 0.080 0.234 0.018 0.030 0.011
sequenc 0.079 0.049 0.018 0.003 0.254
borrow 0.078 0.006 0.005 0.180 0.013
detect 0.076 0.073 0.005 0.005 0.235
telescop 0.076 0.003 0.003 0.003 0.193
cosmolog 0.075 0.003 0.002 0.000 0.178
coach 0.074 0.001 0.173 0.008 0.003
distanc 0.074 0.012 0.058 0.005 0.239
chequ 0.063 0.005 0.005 0.140 0.001
arrai 0.057 0.148 0.009 0.001 0.077
script 0.055 0.150 0.005 0.010 0.013
javascript 0.052 0.147 0.002 0.016 0.017
browser 0.051 0.180 0.011 0.025 0.050
gross 0.050 0.004 0.012 0.134 0.015
activex 0.050 0.109 0.001 0.002 0.002
liabil 0.050 0.005 0.006 0.123 0.006
surfac 0.050 0.020 0.028 0.004 0.178
default 0.049 0.167 0.009 0.030 0.020
input 0.049 0.157 0.016 0.008 0.053
purchas 0.048 0.035 0.035 0.186 0.019
...

...
...

Table 2: Table of keywords ordered by information gain
(second column). The values in columns 3 to 6 are the
probabilities that the term appears in the given cluster.

applet 0.592
button 0.331
javascript 0.319
script 0.263
browser 0.188
password 0.153
thread 0.150
arrai 0.148
...

...

footbal 0.723
coach 0.329
championship 0.298
season 0.242
david 0.132
basketbal 0.128
round 0.122
scotland 0.100
...

...

repay 0.495
borrow 0.324
discount 0.312
pension 0.281
gross 0.226
chequ 0.225
premium 0.222
purchas 0.194
...

...

galaxi 0.626
genet 0.436
sequenc 0.342
theori 0.181
distanc 0.171
cosmolog 0.170
telescop 0.164
energi 0.156
...

...

Table 3: Tables of keywords for each cluster obtained by
sorting the terms of each cluster prototype by their weight
(center coordinate).

5 Conclusions
Our experiments show that prior information about the “im-
portance” or “goodness” of a keyword for a desired class
or cluster can improve the clustering performance for the
separation of two classes. Since this information is fre-
quently available in user profiles or by analyzing manually
categorized document collections, “better” clusters can be
obtained in this way.

For more than two classes, however, our results did not
show a significant improvement. It would be interesting to
analyze if a class specific computation of the information
gain can improve the results. In such an approach the terms
would have to be re-weighted individually for each cluster
during the similarity computation. However, in this case
the corresponding cluster centers also have to be initialized
accordingly.
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