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Abstract

Mining graph databases for frequent subgraphs has re-
cently developed into an area of intensive research. Its main
goals are to reduce the execution time of the existing basic
algorithms and to enhance their capability to find meaning-
ful graph fragments. Here we present a method to achieve
the former, namely an improvement of what we called “per-
fect extension pruning” in an earlier paper [2]. With it
the number of generated fragments and visited search tree
nodes can be reduced, thus accelerating the search.

1. Introduction

In recent years the problem how to find common sub-
graphs in a database of (attributed) graphs, that is, sub-
graphs that appear with a user-specified minimum fre-
quency, has gained intense and still growing attention. For
this task—which has useful applications in, for example,
biochemistry, web mining, and program flow analysis—
several algorithms have been proposed. Some of them rely
on principles from inductive logic programming and de-
scribe the graph structure by logical expressions [6]. How-
ever, the vast majority transfers techniques developed orig-
inally for frequent item set mining. Examples include
MolFea [10], FSG [11], MoSS/MoFa [1], gSpan [15],
Closegraph [16], FFSM [8], and Gaston [13]. A related,
but slightly different approach is used in Subdue [4].

The basic idea of these approaches is to grow subgraphs
into the graphs of the database, adding an edge and maybe
a node in each step, counting the number of graphs contain-
ing each grown subgraph, and eliminating infrequent sub-
graphs. Unfortunately, with this method the same subgraph
can be constructed in several ways, adding its nodes and
edges in different orders. The predominant method to avoid
the ensuing redundant search is to define a canonical form
of a graph that uniquely identifies it up to automorphisms:

together with a specific way of growing the subgraphs it
enables us to determine whether a given subgraph can be
pruned from the search tree (see, for example, [3] for a fam-
ily of such canonical forms and details of the procedure).

To further improve the algorithms one may restrict the
search to so-called closed graph fragments (Section 2),
which capture all information about frequent subgraphs, but
lead to considerably smaller output (in terms of the number
of reported fragments). This restriction also enables us to
employ additional pruning techniques, one of which is per-
fect extension pruning, as we called it in [2], or equivalent
occurrence pruning, as it is called in [16]. Unfortunately,
neither of these approaches, in the form in which they were
described in these papers, works correctly, as they can miss
certain fragments. This flaw we fix in this paper (Section 3).

In addition, the approach in [2] avoided redundant search
with the help of a repository of found fragments instead of
using the more efficient canonical form pruning. As a con-
sequence, perfect extension pruning was easier to perform,
since it was not necessary to pay attention to the canon-
ical form. With canonical form pruning, part of perfect
extension pruning is easy to achieve, namely pruning the
search tree branches to the right of the perfect extension
(Section 4). This was first shown in Closegraph [16]. In
this paper we show how one may also prune the search tree
branches to the left of the perfect extension by introducing a
(strictly limited) code word reorganization (Section 5). We
demonstrate the usefulness of the enhanced approach with
experiments on molecular data sets (Section 6).

2. Mining Closed Graph Fragments

The notion of a closed fragment is derived from the cor-
responding notion of a closed item set, which is defined as
an item set no superset of which has the same support, i.e., is
contained in the same number of transactions. Analogously,
a closed fragment is a fragment no superstructure of which
has the same support, i.e., is contained in the same number
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Figure 1. Three simple example molecules.
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Figure 2. Search tree for the three molecules
in Figure 1; infrequent fragments (contained
in only one molecule) are drawn in grey/light
colors, closed fragments are encircled.

of graphs in the given database. As an example consider
the three molecules (no chemical meaning attached) shown
in Figure 1 as the given database of attributed graphs. A
corresponding search tree (starting from sulfur as a seed
and with fragments being extended only if they appear in
at least two molecules) is shown in Figure 2. The numbers
below or to the left/right of the fragments state their sup-
port, i.e., the number of molecules a fragment is contained
in. Infrequent fragments (i.e. with a support less than two
molecules) are drawn in grey/light colors. The encircled
fragments are closed and thus constitute the output of the
search (for a minimum support of two molecules).

As for item sets, restricting the search for molecular frag-
ments to closed fragments does not lose any information:
all frequent fragments (drawn in black/dark color in Fig-
ure 2) can be constructed from the closed ones by simply
forming all substructures of closed fragments that are not
closed fragments themselves and assigning to them as their
support the maximum of the support values of those closed
fragments of which they are substructures. Consequently,
restricting the search to closed fragments is a very conve-
nient and lossless way to reduce the size of the output.

3. Perfect Extensions

Perfect extension pruning is based on the observation
that sometimes there is a fairly large common fragment in
all currently considered molecules (that is, in all molecules
considered in a certain branch of the search tree). From
the definition of a closed fragment it is clear that in such a
situation, if the current fragment is only a part of the com-
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Figure 3. Example of an imperfect extension.

mon substructure, then any extension that does not grow the
current fragment towards the maximal common one can be
postponed until this maximal common fragment has been
reached. That is, as long as the search has not grown a frag-
ment to this maximal common one, it is not necessary to
branch in the search tree. The reason is, obviously, that
the maximal common fragment is part of all closed frag-
ments that can be found in the currently considered set of
molecules. Consequently, it suffices to follow one path in
the search tree that leads to this maximal common fragment
and to start branching only from there.

As an example consider again the set of molecules shown
in Figure 1. If the search is seeded with a single sulfur atom,
considering extensions by a single bond starting at the sulfur
atom and leading to an oxygen atom can be postponed un-
til the structure S-C-N common to all molecules has been
grown (provided that the extensions of this maximal com-
mon fragment are not restricted in any way—see below).

Technically, the search tree pruning is based on the no-
tion of a perfect extension. An extension of a fragment, con-
sisting of an edge and possibly a node (if the edge does not
close a ring), is called perfect if all of its embeddings can
be extended in exactly the same way by this edge and node.
(Note that there may be several ways of extending an em-
bedding by this edge and node. Then all embeddings must
be extendable in the same number of ways.) If there is a
perfect extension, all closed (super-)fragments can, in prin-
ciple, be found by searching only the corresponding branch.

However, when identifying perfect extensions, one has
to be careful. In the first place, it does not suffice to check
whether the number of embeddings of the extended frag-
ment is equal to or a multiple of the number of embeddings
of the base fragment (as one may think at first sight). This is
only a necessary, but not a sufficient condition, as the exam-
ple shown in Figure 3 demonstrates. Even though the total
number of embeddings in the right branch is the same as
for the root, the extension is not perfect. The left branch is
not perfect, because the number of extended embeddings,
even though the same for each parent embedding, is re-
duced from the number of extensions of its parents. Such
a reduction, which also occurs in the right branch for the
left molecule, indicates that some symmetry has been de-
stroyed by the extension, which therefore cannot be perfect.
As a consequence, a test for perfect extension actually has
to count the number of embeddings per database graph.

A second problem (which was overlooked in both [16]
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Figure 4. Rings/cycles can cause problems.
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Figure 5. Search tree for the two molecules in
Figure 4; closed fragments are encircled.

and [2]) is the behavior of rings (cycles) in the search, as we
demonstrate with the example molecules shown in Figure 4.
A search tree for these molecules (with only such fragments
that are contained in both molecules) is shown in Figure 5.
Here almost all extensions are perfect in the sense that they
can be made in the same way in all molecules. However, the
problem becomes clear when one considers adding a bond
from the nitrogen atom to a carbon atom. This rules out
certain ways of reaching the carbon atom via the oxygen
atom and the rest of the ring. Hence the bond leading to the
carbon atom is only “locally” perfect, but not “globally”,
that is, when the ring structure is taken into account.

In order to cope with this problem we require that perfect
extensions must be bridges (that is, the extension edge must
be a bridge in all embeddings of the extended fragment).
This is surely a safe (i.e., sufficient) condition as it rules out
any possibility that the destination of the perfect extension
edge can be reached in any other way, and thus fixes the flaw
mentioned above. However, it is not necessary. As a closer
inspection easily reveals, extensions closing a ring (that is,
leading to a node that is already in the base fragment) are
also safe and thus can be allowed as candidates for perfect
extensions. Hence we can slightly relax the constraints.

Note that these relaxed constraints are still only suffi-
cient, but not necessary. There are other situations in which
an edge is a perfect extension even though it does not meet
the above conditions, for example, if an edge leads to a new
node and is part of rings of the same size and composition
in all supporting graphs. Checking necessary and sufficient
conditions is, however, complicated and costly.
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Figure 6. Search tree for the three molecules
in Figure 1 with partial perfect extension
pruning (crossed out branches are pruned).

4. Partial Perfect Extension Pruning

If one wants to combine perfect extension pruning with
canonical form pruning, another problem has to be solved:
growing the maximal common fragment can interfere with
the extension restrictions resulting from canonical form
pruning (see [3] for details, and note that this was no prob-
lem in [2] due to the use of a repository of found fragments
to avoid redundant search). For example, with a breadth-
first search based canonical form (as in MoSS/MoFa) one
must not extend a fragment by edges starting from nodes
with smaller numbers than the one extended in the preced-
ing step. However, perfect extensions should not lead to
such a restriction, because otherwise search results are lost.

As an example consider again the search tree shown in
Figure 2. If we simply confined the search to the subtree
rooted at the fragment S-C-N, we would lose the fragment
O-S-C-N in the leftmost branch. The reason is that the ex-
tension of S-C to S-C-N, due to canonical form restricted
extensions, prevents an extension of the sulfur atom in this
subtree, because an atom with a higher number, namely the
carbon atom, has been extended in the preceding step.

Fortunately, this only affects search tree branches to the
left of the perfect extension branch, since these extensions
are ruled out by the perfect extension. All extensions corre-
sponding to branches to the right of the perfect extension
are still possible for the fragment reached by the perfect
extension. Therefore branches to the right can be pruned
immediately without any loss. This type of pruning we call
partial perfect extension pruning (because it prunes only
part of the branches aside from the perfect extension one).
Note that Closegraph [16] uses only this form of pruning.

How partial perfect extension pruning changes the search
tree for the molecules in Figure 1 is shown in Figure 6. Note
that only non-closed fragments are removed from the search
tree (compare to Figure 2, in which the closed fragments
are highlighted). The gains consist in the fact that the two
pruned fragments need not be processed.
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Figure 7. Search tree for the three molecules
in Figure 1 with full perfect extension pruning
(crossed out branches are pruned).

5. Full Perfect Extension Pruning

Although partial perfect extension pruning is already
highly effective, it is desirable to prune also the search tree
branches to the left of the perfect extension, thus completing
partial perfect extension pruning into full perfect extension
pruning. In order to do so, we must not restrict the exten-
sions of the fragment that resulted from a perfect extension
as it would be required by canonical form pruning. Other-
wise we would lose fragments, as we demonstrated above.
In other words, we would like to have a search tree like the
one shown in Figure 7 for the molecules in Figure 1.

The core problem with this is how we can avoid that the
fragment O-S-C-N is pruned as non-canonic. The breadth-
first search canonical code word for this fragment is1

S 0-C1 0-O2 1-N3.
However, with the search tree in Figure 7 it is assigned

S 0-C1 1-N2 0-O3,
because this reflects the order in which the bonds have been
added. Since this code word is not canonical, the fragment
would be pruned and neither extended nor reported.

In order to avoid this, we allow for a (strictly limited) re-
organization of code words as they result from a search tree,
which takes care of the fact that perfect extension edges
may have been added earlier than required by the canoni-
cal form. We split the code word into two parts: The first,
fixed part consists of the (possibly empty) prefix up to and
including the last edge that was added by a non-perfect ex-
tension or a perfect extension with no search tree branches
to the left of it (after minimum support pruning). The sec-
ond, volatile part consists of the remaining suffix of the code

1A breadth-first search code word has the general form a (is b a id)m,
where a is node attribute, b an edge attribute, is the index of the source
node of an edge, and id the index of the destination node of an edge. m
is the number of edges of the fragment. Each parenthesized expression
describes one edge. These edge descriptions are sorted lexicographically.
The lexicographically smallest code word over all possible breadth-first
numberings of the nodes of the fragment is the canonical code word. De-
tails about a whole family of canonical forms can be found in [3].

word, which is made up only of perfect extensions edges,
which had search tree branches to the left. Instead of always
appending it at the end of a code word, the description of a
new edge may now be inserted anywhere in or even before
the volatile part, but not in the fixed part. We may imagine
this as first appending the new edge description and then
shifting it to the left, as long as this makes the code word
lexicographically smaller, but not entering the fixed part.

Note, however, that “shifting” an edge in the code word
can make it necessary to renumber the nodes. For exam-
ple, if in the fragment O-S-C-N the bond added last in
the search (that is, the bond from the sulphur to the oxygen
atom) is shifted left past the perfect extension bond (that is,
the bond from the carbon to the nitrogen atom), the oxygen
and the nitrogen atom get new indices.

Technically, we achieve this renumbering as follows: in-
stead of actually shifting the extension edge from right to
left, we rebuild the code word from left to right. First we
traverse the fixed part, numbering all nodes in the order in
which they are met. Then we continue with the volatile part
until at least one of the two nodes incident to the new edge
is numbered. (Note that this may already be the case before
the first volatile edge is considered. In this case no edge of
the volatile part is processed in this step.)

Finally we traverse the (remaining) volatile part edge
by edge, each time comparing the next edge to the new
edge. If the new edge (w.r.t. source and—possibly still to
be assigned—destination index and edge and destination
node attribute) is lexicographically smaller, it is inserted at
the current position in the volatile part and the rest of the
volatile part is appended. Otherwise any unnumbered node
incident to the current volatile edge is numbered and the
next volatile edge is considered. If all volatile edges have
been traversed and the new edge has not been inserted, it is
simply appended at the end of the code word.

Note that, provided the new edge is not a perfect exten-
sion itself, the insertion position of the new edge is recorded
for the restricted extensions as required by the canonical
form (that is, extensions preceding this edge are ruled out).
In other words, if the new edge is not a perfect extension,
the place at which it is inserted is the new end of the fixed
part of the code word (see above).

Note also that the resulting code word still has to be
checked for canonical form. Since the reorganization is
strictly limited, the resulting code word may not be canoni-
cal. In this case the fragment has to be pruned.

6. Experiments

In order to test full perfect extension pruning, we imple-
mented it as an extension of the MoSS program2, which is

2MoSS is available for free download under the Gnu Lesser (Library)
Public License at http://fuzzy.cs.uni-magdeburg.de/∼borgelt/moss.html.
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Figure 8. Experimental results on the IC93 data without ring mining (pure single bond extensions).
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Figure 9. Experimental results on the IC93 data with ring mining (complete ring extensions).
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Figure 10. Experimental results on the steroids data with ring mining (complete ring extensions).

written in Java. As the test dataset we used the well-known
subset of the Index Chemicus 1993 [9] and a small dataset
of 17 steroids. The results on these datasets with different
search modes are shown in Figures 8 to 10, which display
the number of search tree nodes (left), created fragments
(middle), and created embeddings (right). The horizontal
axis shows the minimal support in percent (IC93) or as an
absolute number (steroids). For the experiments of Fig-
ures 9 and 10 we used ring mining, which means that rings
in a user-defined size range (here: 5 to 6 bonds) were not
built edge by edge, but added in one step. In each diagram

the dashed grey line refers to the basic algorithm without
any perfect extension pruning, the grey solid line to par-
tial perfect extension pruning and the black solid line to full
perfect extension pruning.

These results show that full perfect extension pruning
indeed leads to some non-negligible gains (in the order
of about 5 to 10%) over partial perfect extension pruning.
Tests we ran during the development of the program in-
dicated that relaxing the constraints for perfect extensions
(also edges closing rings/cycles instead of only bridges) im-
proved performance by up to an additional 3%.
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7. Conclusions

In this paper we fixed the flaw of the original descriptions
of perfect extension pruning by requiring that perfect ex-
tensions must be bridges, but still allowing edges that close
rings/cycles apart from bridges. In addition, we introduced
full perfect extension pruning, which consists in pruning not
only the search tree branches to the right (partial perfect ex-
tension pruning as it is used in Closegraph [16]), but also
those to the left of the perfect extension branch. To make
this possible in combination with canonical form pruning,
we allowed for a (strictly limited) reorganization of code
words as they result from the search. The experimental re-
sults show that this method can actually further reduce the
complexity of the search, although the main improvement
comes from partial perfect extension pruning. Future work
is directed at combining sibling perfect extensions into one
extension, so that perfect extensions, once found, need not
be rediscovered and reprocessed.
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