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Background Rate Estimation (BRE)

The probability that an item i occurs in a given time bin may be decom-
posed into two constituents: the background occurrence probability, denoted
by θi = λi,b ·w, and the coincidence probability, denoted by ξi = λi,c ·w, which
captures the joint influence of all assemblies item i participates in. Here λi,b
and λi,c are the background and coincidence occurrence rates of item i, respec-
tively, and w is the length of a time bin. Since we assume that the hidden
processes that generate the background and the coincident item occurrences are
independent, the effective occurrence probability of item i is ηi = θi + ξi − θiξi.

We want to determine whether item i participates in an assembly or not,
that is, whether ξi > 0 (alternative hypothesis) or ξi = 0 (null hypothesis). Due
to the above equation we have ξi = ηi−θi

1−θi . Note that ηi can easily be estimated
from the data, namely as η̂i = Ti/T , where Ti is the number of time bins in
which item i occurs and T is the total number of time bins. As a consequence
we can derive a statistical test if we can estimate the background probability θi.

To derive an estimator for θi, we consider a set of N independent items
without assemblies (i.e. ∀j; 1 ≤ j ≤ N : ξj = 0). The probability p0 that no

item occurs in a time bin is p0 =
∏N
j=1(1− θj) and the probability pi0 that only

item i occurs is pi0 = θi
∏N
j=1,j 6=i(1 − θj). It follows pi0

p0
= θi

1−θi and therefore

θi = pi0
pi0+p0

. Obviously, p0 and pi0 can be estimated easily, namely as p̂0 = T0/T

and p̂i = Ti0/T , respectively, where T0 is the number of time bins in which no
item occurs and Ti0 the number of bins in which only item i occurs.

The crucial insight is now that the probabilities p0 and pi0 remain unaffected
if items participate in assemblies, because both refer to time bins with at most
one event. However, coincident item occurrences, by their very definition, mean
that more than one item occurs in the same time bin. As a consequence, θi can
be estimated, even in the presence of assemblies, as θ̂i = Ti0/(Ti0 + T0). The

actual test whether item i participates in an assembly checks whether ξ̂i is
sufficiently large so that the null hypothesis ξi = 0 can be rejected. A natural
test statistic, estimating the fraction of coincidence events, is

tBRE(i) =
ξ̂i
η̂i

=
η̂i − θ̂i
η̂i(1− θ̂i)

.

As a generalization of this approach one may consider to estimate the back-
ground occurrence rate of item i not only from the time bins in which at most
item i occurs, but also from those time bins, in which a maximum of r, r ≥ 0,
other items occur (r = 0 yields the case discussed above). This provides an
indication whether item i participates in assemblies with more than r+1 items.
However, one should be aware that for r > 0 a possible participation in assem-
blies of smaller size (at most r+1 items) can obscure the participation in larger
assemblies (more than r + 1 items), because in this case we are not estimating
the true background occurrence probability, but the probability resulting from
background occurrences and participation in small assemblies.
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Conditional Pattern Cardinality/Complexity (CPC)

A plausible approach to identify items participating in assemblies is based on
the idea that such items should have, on average, more items occurring together
with them in the original data than in the surrogates. In other words, if some
item i participates in one or more (large) assemblies, there should be several time
bins in which it occurs together with a larger number of other items. Hence the
average complexity (cardinality/size) of patterns (time bin contents) involving
item i should be larger than can be expected by chance. Formally, we use

µ̄(i) =
1

T

T∑
l=1

|Il − {i}| and µ(i) =
1

Ti

T∑
l=1

1Il(i) |Il − {i}|,

where Il is the set of items that occur in the lth time bin, 1Il(i) is the indi-
cator function of the set Il (which is 1 if i ∈ Il and 0 otherwise), T is the

total number of time bins, and Ti =
∑T
l=1 1Il(i) is the number of time bins in

which item i occurs. Thus, µ̄i is simply the overall average pattern cardinality
(with events/occurrences of item i removed), while µi is the average pattern
cardinality/complexity in time bins in which item i occurs (again with events
of item i removed), which we may also call the conditional average pattern car-
dinality/complexity (conditional on events of item i). A natural test statistic is

tCPC(i) =
µ(i)− µ̄(i)

µ̄(i)
.

An obvious way to improve this statistic is to weight large cardinalities more
strongly than smaller ones, because large cardinalities are, intuitively, more in-
dicative of assembly activity. A simple technical means to achieve such weighting
is to raise the cardinalities to a user-specified power α:

µ̄α(i) =
1

T

T∑
l=1

|Il − {i}|α and µα(i) =
1

Ti

T∑
l=1

1Il(i) |Il − {i}|α.

In other words, instead of a simple mean of the pattern cardinalities, we employ
higher moments. The resulting test statistic is

tCPC
α (i) =

µα(i)− µ̄α(i)

µ̄α(i)
.

Conditional Excess Cardinality/Complexity (CXC)

The test statistic tCPC considers all cardinalities, and only the extended form
places higher emphasis on larger cardinalities, since these tell us about possibly
existing correlations. This emphasis may be increased by considering only those
cardinalities that exceed the average pattern cardinalitiy µ̄(i) (as defined above),
or formally (with the user-specified power α already added):

tCXC
α (i) =

T∑
l=1

1Il(i) ζ(|Il − {i}| > µ̄(i)) (|Il − {i}| − µ̄(i))α,

where ζ(ϕ) is 1 if ϕ is true and 0 otherwise. Note that in this case the weighting
by the user-specified power α is “shifted” in its influence, because it acts on the
difference of the pattern cardinality to the average pattern cardinality and not
on the pattern cardinality directly (as it is the case for tCPC).
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Conditional Cardinality/Complexity Frequency (CCF)

An alternative way to exploit the influence that correlations have on the pat-
tern cardinalities is to consider the frequencies of the different possible pattern
cardinalities. If large pattern cardinalities occur more frequently in those time
bins, in which the considered item i occurs, than in all time bins, then item i is
likely involved in an assembly. To capture this idea formally, let

φ̄ix =

T∑
l=1

ζ(|Il − {i}| = x) and φix =

T∑
l=1

1Il(i) ζ(|Il − {i}| = x)

be the overall frequency of the pattern cardinality x and its frequency in those
time bins in which item i occurs, respectively (in both cases with events of
item i removed). Furthermore, let η̂i = Ti/T be the fraction of time bins in
which item i occurs (denoted as η̂i, because it is an estimate of the occurrence
rate ηi of item i). Thus, φ̄ixη̂i is the expected frequency of pattern cardinality x
in those cases in which item i fires, while φix is its actual frequency. With these
definitions we can define the test statistic

tCCF
α (i) =

N−1∑
x=dµ̄(i)e

ζ(φix > φ̄ixη̂i) (φix − φ̄ixη̂i) (x− µ̄(i))α,

where µ̄(i) is the average pattern cardinality (with events of item i removed,
see above). That is, we sum, for conditional pattern cardinalities that meet or
exceed the average pattern cardinality, the excess over their expected frequency.
Since excess frequencies for larger complexities provide stronger evidence, the
excess frequencies are weighted with the pattern cardinality (factor x − µ̄(i)),
and since larger pattern cardinalities are more strongly indicative of assembly
membership, these are additionally weighted with a user-specified power α.

Conditional Cardinality Frequency Ratio (CCR)

In the preceding statistic (tCCF), the excess frequencies of larger pattern cardi-
nalities were weighted higher by multiplying them with the pattern cardinality
itself (factor x− µ̄(i)). In addition, we may exploit that usually smaller pattern
cardinalities are more frequent than larger ones. Consequently, we can achieve
a weighting by forming the ratio to the expected frequency:

tCCR
α (i) =

N−1∑
x=dµ̄(i)e

ζ(φix > φ̄ixη̂i)

(
φix − φ̄ixη̂i
φ̄ixη̂i + 1

)
(x− µ̄(i))α.

The +1 in the denominator helps handling vanishing expected frequencies.

Conditional Fano Factor (CFF)

The Fano factor—also known as the dispersion index, the coefficient of disper-
sion or the variance-to-mean ratio—is a measure of the dispersion of a probabil-
ity distribution. It is simply defined as the variance of a probability distribution
divided by its mean value. In order to apply the Fano factor to the pattern car-
dinality distribution, we define (in addition to the mean values µ̄(i) and µ(i)
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as defined above in the context of the conditional pattern cardinality statistic)
the overall and the conditional variance (that is, for those time bins, in which
item i occurs), respectively, of the pattern cardinality as

σ̄2(i) =
1

T − 1

T∑
l=1

(|Il − {i}| − µ̄(i))2

and

σ2(i) =
1

Ti − 1

T∑
l=1

1Il(i) (|Il − {i}| − µ(i))2.

With these variances we can define the overall and the conditional (on events
of item i) Fano factor for the pattern cardinality as

F̄ (i) =
σ̄2(i)

µ̄(i)
and F (i) =

σ2(i)

µ(i)
.

A natural test statistic based on these quantities is

tCFF(i) =
F (i)− F̄ (i)

F̄ (i)
.

A user-specified power can be introduced in a similar fashion as for the condi-
tional pattern cardinality, namely by using higher moments (about the mean),

m̄α(i) =
1

T − 1

T∑
l=1

(|Il − {i}| − µ̄(i))α+1

and

m2
α(i) =

1

Ti − 1

T∑
l=1

1Il(i) (|Il − {i}| − µ(i))α+1,

and using these quantities to define the generalized Fano factors

F̄α(i) =
m̄α(i)

µ̄(i)
and Fα(i) =

mα(i)

µ(i)
,

thus arriving at the test statistic

tCFF
α (i) =

Fα(i)− F̄α(i)

F̄α(i)
.

Conditional Item Frequency (CIF)

In a second line of approaches we take into account how often other individual
items occur together with item i. The idea is that if item i participates in one
or more assemblies, it should occur more often together with certain other items
(namely those also in the assemblies) than can be expected by chance. In order
to be less sensitive to differing occurrence rates, we use the excess occurrence
rates to form a test statistic: we compute for each item j, j 6= i, the difference
between the conditional occurrence rate Tij/Ti and the expected (or global) rate

of such events, estimated as Tj/T , where Tij =
∑T
l=1 1Il(i)1Il(j) is the number
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of joint occurrences of the items i and j, Ti =
∑T
l=1 1Il(i) and Tj =

∑T
l=1 1Il(j)

are the numbers of occurrences of items i and j, respectively, and T is the total
number of time bins. Since only excess rates tell us about possible correlations,
negative differences are ignored. Formally, the test statistic is

tCIF(i) =
1

N − 1

N∑
j=1,j 6=i

ζ(Tij/Ti > Tj/T ) (Tij/Ti − Tj/T ),

where N is the total number of items and, as above, ζ(ϕ) is 1 if ϕ is true and 0
otherwise. In analogy to previous modifications we may consider weighting a
large excess rate more strongly than a small excess rate, as a large excess rate is
certainly more indicative of assembly activity. In order to achieve this, we once
again introduce a user-specified power α to which the excess rate is raised:

tCIF
α (i) =

1

N − 1

N∑
j=1,j 6=i

ζ(Tij/Ti > Tj/T ) (Tij/Ti − Tj/T )α.

Conditional Item Frequency Ratio (CIR)

As a straightforward variant of the previous statistic, one may relate the excess
occurrence rate to the expected (or global) ocurrence rate, to achieve a normal-
ization of the terms of the statistic. In this case, the statistic reads (with the
user-specified power α already added):

tCIR
α (i) =

1

N − 1

N∑
j=1,j 6=i

ζ(Tij/Ti > Tj/T )

(
Tij/Ti − Tj/T

Tj/T

)α
.

Conditional Item Weight (CIW)

For the test statistic of conditional item frequencies it is only considered whether
another item j occurs together with the considered item i. The cardinality of the
pattern in which this coincidence occurs is neglected. However, it is plausible
that coincident events of two items i and j in a pattern of high cardinality
are more indicative of possible correlations than coincident events in a pattern
of low cardinality. In particular, patterns that contain only the events of the
two items i and j, but no other events, do not tell us much. This idea can be
exploited by not simply counting the number of co-occurrences of items, but
to weight these co-occurrences with the cardinality of the containing pattern.
Formally, this idea can be captured as follows: let

w
(i)
j =

T∑
l=1

1Il(j) |Il − {i}| and w
(i)
ij =

T∑
l=1

1Il(i) 1Il(j) |Il − {i}|

be the overall weight of events of item j and the weight of joint events of item i
and item j, respectively (in both cases events of item i are removed). Then we
define the test statistic (with a user-specified power α already added)

tCIW
α (i) =

1

N − 1

N∑
j=1,j 6=i

ζ
(
w

(i)
ij /Ti > w

(i)
j /T

) (
w

(i)
ij /Ti − w

(i)
j /T

)α
.
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Conditional Item Weight Ratio (CWR)

In analogy to the conditional item frequency ratio (tCIR, which is a normalized
form of tCIF), we may define a conditional item weight ratio as

tCIW
α (i) =

1

N − 1

N∑
j=1,j 6=i

ζ
(
w

(i)
ij /Ti > w

(i)
j /T

) (w(i)
ij /Ti − w

(i)
j /T

w
(i)
j /T

)α
.

Conditional Pattern Overlap (CPO)

All preceding statistics consider only individual time bins in order to compute a
test statistic. However, in order to find higher order correlations, pairs of time
bins provide much better information. In particular, if we can find many pairs
of time bins in which a considered item i occurs together with the same set of
other items, this strongly suggests that item i is involved in an assembly. In
order to capture this idea formally, we define the test statistic

tCPO(i) =

T∑
a=2

a−1∑
b=1

1Ia∩Ib(i) ζ(|Ia ∩ Ib − {i}| > 1) |Ia ∩ Ib − {i}|,

where the factor ζ(|Ia∩Ib−{i}| > 1) excludes patterns that overlap only in one
other item. Such overlaps are fairly likely to happen by chance and thus would
deteriorate the sensitivity of the statistic. In addition, we may introduce a user-
specified power α, so that large overlaps, which are clearly more indicative of
assembly activity, are we weighted more strongly. This leads to

tCPO
α (i) =

T∑
a=2

a−1∑
b=1

1Ia∩Ib(i) ζ(|Ia ∩ Ib − {i}| > 1) |Ia ∩ Ib − {i}|α.

It should be noted that, due to the double sum, this statistic is computationally
more demanding than all other statistics: it is quadratic in the number of events
of the considered item i, while all other statistics are linear in this number.
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